Свойства углеродных нанотрубок. Углеродные нанотрубки и нановолкна Очистка углеродных нанотрубок

ние в серной кислоте, содержащей хромовый ангидрид. Однако необходимо предварительное удаление крупной фракции гранул наноалмаза. Список литературы 1. Spitsyn B.V., Davidson J.L., Gradoboev M.N., Galushko T.B., Serebryakova N.V., Karpukhina T.A., Kulakova I.I., Melnik N.N. Inroad to modification of detonation nanodiamond // Diamond and Related Materials, 2006, Vol. 15, p. 296-299 2. Пат. 5-10695, Япония (А), Хромопокрывающий раствор, Tokyo Daiyamondo Kogu Seisakusho K.K., 27.04.1993 3. Долматов, В.Ю. Ультрадисперсные алмазы детонационного синтеза как основа нового класса композиционных металл-алмазных гальванических покрытий/ В.Ю.Долматов, Г.К.Буркат // Сверхтвердые материалы, 2000, Т. 1.- С. 84-94 4. Gregory R. Flocculation and sedimentation - the basic principles // Spec. Chem., 1991, Vol. 11, № 6, p. 426-430 УДК 661.66 Н.Ю. Бирюкова1, А. Н. Коваленко1, С.Ю. Царева1, Л.Д. Исхакова2, Е.В. Жариков1 Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия Научный центр волоконной оптики РАН, Москва, Россия 1 2 ОЧИСТКА УГЛЕРОДНЫХ НАНОТРУБОК, ПОЛУЧЕННЫХ МЕТОДОМ КАТАЛИТИЧЕСКОГО ПИРОЛИЗА БЕНЗОЛА In this work the results of experimental studies of purification and separation of multi-walled nanotubes by physical and chemical methods are presented. The efficiency of each stage has been controlled by studying of morphological characteristics of pyrolysis products. В работе представлены результаты экспериментальных исследований очистки и разделения многослойных углеродных нанотрубок физическими и химическими методами. Эффективность каждой стадии очистки контролировали по изменению морфологических характеристик продуктов пиролиза. Метод каталитического пиролиза углеводородов является одним из перспективных методов синтеза углеродных нанотрубок. Метод позволяет получать однослойные, многослойные нанотрубки, ориентированные массивы углеродных наноструктур при соответствующей организации параметров синтеза. Вместе с тем, продукт, полученный пиролизом углеродосодержащих соединений, наряду с нанотрубками содержит значительное количество примесей, таких как частицы катализатора, аморфный углерод, фуллерены и др. Для удаления этих примесей обычно используют физические методы (центрифугирование, ультразвуковое воздействие, фильтрация) в сочетании с химическими (окисление в газовых или жидких средах при повышенных температурах). В работе отрабатывалась комбинированная методика очистки и разделения многослойных нанотрубок от побочных продуктов, определялась эффективность различных реагентов. Исходный депозит был получен методом каталитического пиролиза бензола с использованием в качестве предкатализатора пентакарбонила железа. Депозит обрабатывался соляной, серной и азотной кислотами. Агрегаты нанотрубок разбивали ультразвуком с частотой 22 кГц. Для разделения депозита по фракциям использовали центрифугирование (3000 об/мин, продолжительность обработки – до 1 часа). Кроме кислотной, использовали также термическую обработку нанотрубок на У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 56 воздухе. Для достижения наилучшей очистки устанавливалась оптимальная последовательность различных методов. Морфологические характеристики продуктов пиролиза и степень очистки контролировали методами сканирующей электронной микроскопии, рамановской спектроскопии и рентгенофазового анализа. УДК 541.1 Е.Н. Голубина, Н.Ф. Кизим, В.В. Москаленко Новомосковский институт Российского химико-технологического университета им. Д.И. Менделеева, Новомосковск, Россия ВЛИЯНИЕ НАНОСТРУКТУР НА ОСОБЕННОСТИ ЭКСТРАКЦИИ В СИСТЕМЕ ВОДА – ErCl3 – Д2ЭГФК – ГЕПТАН КИНЕТИКИ The kinetic feature of extracted Er(III) the solution of D2EHPA in heptane (the concentrated area on kinetic curve, the high rate of its accumulation at dynamic interfacial layers in beginning of process, the extremal disposition in depending of reviewed thickness of dynamic interfacial layers from ratio concentration element and solvent) are indicate at significant part of nanostructures in process of extraction. Кинетические особенности извлечения эрбия (III) растворами Д2ЭГФК в гептане (концентрационные площадки на кинетических кривых, высокая скорость его накопления в ДМС в начале процесса, экстремальный характер зависимости наблюдаемой толщины ДМС от соотношения концентраций элемента и экстрагента) указывают на существенную роль наноструктур в процессе экстракции. Известно , что в экстракционных системах могут возникать различные нанообъекты: адсорбционные слои, мицеллы, мицеллярные гели, везикулы, полимерные гели, кристаллические гели, микроэмульсия, нанодисперсия, эмульсия. В частности, в системе La(OH)3-Д2ЭГФК-декан-вода образуется органогель, пространственная структура которого построена из палочкообразных частиц диаметром ≈0,2 и длиной 2-3 мкм . Натриевая соль Д2ЭГФК в отсутствии воды образует обратные цилиндрические мицеллы с радиусом 53 нм . В поперечном сечении мицеллы располагаются три молекулы NaД2ЭГФ, ориентированных полярными группами к центру и углеводородными цепями в сторону органического растворителя. Состояние такой решетки зависит от природы элемента . В случае Со(Д2ЭГФ)2 образуются макромолекулярные структуры со значением числа агрегации больше 225. В случае Ni(Д2ЭГФ)2 (возможно и Ni(Д2ЭГФ)2⋅2Н2О) возникают агрегаты с числом агрегации ≈5,2. При определенных условиях возможно образование полимерных молекулярных структур с гидродинамическим радиусом ≈15 нм. При экстракции лантана растворами Д2ЭГФК происходит образование объемного и структурно-жесткого алкилфосфата лантана, что обуславливает снижение эластичности монослоя алкилфосфата лантана на границе раздела фаз . Образование наноструктур оказывает влияние, как на равновесные свойства системы, так и на кинетику процесса. Экстракция РЗЭ осложнена протеканием многочисленных межфазных процессов, таких как возникновение и развитие спонтанной поверхностной конвекции (СПК), образование структурно-механического барьера, диспергирование фаз и т.п. В результате химической реакции между Д2ЭГФК и элементом образуется труднорастворимая соль, которая обуславливает образование наноструктур по механизму «от меньшего к большему» . Целью данной работы явилось установление влияния наноструктур на кинетические особенности экстракции эрбия(III) растворами Д2ЭГФК в гептане. У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 57

Размер: px

Начинать показ со страницы:

Транскрипт

1 ТЕХНИЧЕСКИЕ ИННОВАЦИИ УДК ББК 30.6 ФИЛЬТР НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК ДЛЯ ОЧИСТКИ СПИРТОСОДЕРЖАЩИХ ЖИДКОСТЕЙ Н.П. Поликарпова, И.В. Запороцкова, Т.А. Ермакова, П.А. Запороцков Проведены эксперименты по очистке спиртосодержащих жидкостей методами фильтрации и пропускания, установлена массовая доля углеродных нанотрубок, приводящая к наилучшему результату. Создан макет фильтра на основе наноматериала, заключенного в пространство между слоями пористого стекла и определены его конструкционные особенности. Поликарпова Н.П., Запороцкова И.В., Ермакова Т.А., Запороцков П.А., 2012 Ключевые слова: углеродные нанотрубки, спиртосодержащая жидкость, адсорбция, фильтр, пористое стекло, пористая керамика. Введение Очистка спиртосодержащих жидкостей, к которым относятся продукты пищевой промышленности водки, играет важную роль в процессе их производства. Каждый производитель пытается использовать максимально эффективные методы очистки спиртосодержащей жидкости от примесей и сивушных масел. Сивушные масла, альдегиды, минеральные соли и прочие примеси удаляют из продукта методом фильтрации, используя древесный уголь, кварцевый песок, серебряную пыль, платиновые фильтры, сухое молоко, яичный белок. Многие из производителей дорогих сортов водок повторяют очистку многократно, комбинируя различные варианты. Каждая последующая очистка еще сильнее избавляет продукт от сивушных масел и прочих примесей. Двойная или тройная степень очистки существенно улучшает вкусовые качества, но и ощутимо удорожает процесс изготовления. В настоящее время на ликеро-водочных предприятиях применяют различные методы очистки спиртосодержащей продукции. Самые распространенные из них это очистка с помощью угольных фильтров, очистка молоком и яичными белками, «серебряная фильтрация» и очистка золотом и драгоценными камнями. В работах И.В. Запороцковой и Н.П. Запороцковой представлены результаты теоретических расчетов адсорбционного взаимодействия углеродных нанотрубок (УНТ) с молекулами тяжелых органических спиртов, входящих в состав спиртосодержащих жидкостей в виде нежелательных примесей, и доказана возможность их сорбции на поверхности нанотруб. Это позволило предложить инновационный способ очистки водно-этанольных смесей, к которым относятся водки, с помощью углеродного наноматериала . Как известно, графитовые сорбенты и древесный уголь очищают продукт от вредных примесей на 60 %, молоко на 70 %, драгоценные металлы (серебро, золото) на 75 %. Применение же в качестве сорбирующего материала углеродных нанотрубок позволит очистить спиртосодержащую жидкость от примесей на 98 %. Также к преимуществам заявленных фильтров на основе УНТ можно отнести: 1) высокую производительность процесса при низкой себестоимости; 2) в десятки раз меньший объем адсорбирующего вещества; 3) отсутствие побочных эффектов от использования адсорбентов графитовой природы с сохранением и многократным увеличением активности процесса; Вестник ВолГУ. Серия 10. Вып

2 4) возможность селективной адсорбции. Следует отметить, что внедрение фильтра на основе наноматериалов в законченный цикл производства на заключительном этапе без принципиального изменения технологического процесса обеспечивает практически 100-процентную очистку продукта водно-этанольных смесей без существенного удорожания производства. 1. Определение оптимального количества углеродного наноматериала для очистки жидкостей Перед тем, как приступить непосредственно к лабораторным экспериментам по очистке спиртосодержащих жидкостей (водок отечественного производства), было необходимо определить оптимальное количество наноматериала, приводящего к желаемому эффекту высокой степени очистки. В качестве объекта исследований была выбрана водка «Выпьем за», относящаяся к классу обычных водок невысокой стоимости. Исследования жидкости проводили титриметрическим методом до момента, пока не была выявлена минимальная масса нанотрубок, необходимая для эффективной очистки 50 мл водки. Подбор проводили способом «от большего к меньшему», первоначальное количество углеродных нанотрубок составляло 1 г. Точность взвешивания УНТ была определена точностью используемых аналитических весов и составляла 0,0001 г. Уменьшение количества нанотрубок проводилось до фиксации момента, когда перестала уменьшаться щелочность водки. Согласно нормам ГОСТ Р «Водки и водки особые. Общие технические условия» , щелочность водки не должна превышать 2,5 3,0 мл. До очистки щелочность выбранной водки была равна 2,5 мл. Результаты выполненных титриметрических исследований представлены в таблице. Анализ результатов показал, что пропускание спиртосодержащей жидкости через фильтр с углеродными нанотрубками снижает показатель щелочности в среднем на 98 % (на 2,45 мл). Минимальным количеством необходимого наноматериала является 0,001 г, так как при уменьшении этого количества щелочность резко возрастает, а при большем количестве ее уменьшение незначительно. 2. Подбор материала для создания оболочки фильтра на основе углеродных нанотрубок В производстве водки в качестве фильтров можно использовать как фильтры с пористым стеклом, такие как фильтры Шотта, так и керамические фильтры. Эти пористые материалы могут быть использованы также как материалы для создания оболочки фильтра на основе углеродных нанотрубок. Рассмотрим особенности названных материалов. Пористое стекло стеклообразный пористый материал с губчатой структурой и содержанием оксида кремния SiO 2 около 96 % (масс.). Пористое стекло является результатом термической и химической обработки стекол особого состава. Пористые стекла могут быть получены только из стекол с достаточно высоким содержанием Na 2 O , в которых сосуществующие фазы после длительной тепловой обработки образуют взаимопроникающие друг в друга каркасы. Необходимым условием получения пористых стекол является также содержание в исходных стеклах не менее 40 % (масс.) диоксида кремния, обеспечивающее образование в стекле непрерывной пространственной сетки SiO 2 . Стеклянные фильтры это пластинки из размельченного и сплавленного стекла. Для их изготовления стекло размалывают в шаровых мельницах и просеивают при помощи набора сит. Стеклянный порошок спекают нагреванием в печи в металлических или керамических формах. Полученные пластинки впаивают в трубки, стаканы, воронки, тигли и другую посуду из стекла того же состава. Через такие пластинки можно фильтровать горячие растворы, концентрированные кислоты и разбавленные щелочи, так как такие фильтры устойчивы к действию агрессивных сред. Фильтрующие пластинки различают по пористости. В зависимости от размера пор изготавливают несколько классов фильтров. Стеклянные фильтры, или так называемые фильтры Шотта, выпускаются следующих типов: 1 размер пор составляет мкм, применяется для работы с крупнокристаллическими осадками; 7 6 Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок

3 2 размер пор составляет мкм, применяется для работы с среднекристаллическими осадками; 3 размер пор составляет мкм, применяется для работы с мелкими кристаллическими осадками; 4 размер пор составляет 4 10 мкм, применяется для работы с очень мелкими кристаллическими осадками. Керамические мембраны это пористые керамические фильтры тонкой очистки, изготовленные спеканием металлокерамических материалов, таких как оксид алюминия, диоксид титана или циркония (рис. 1), при сверхвысоких температурах . Керамические мембраны обычно имеют асимметричную структуру, поддерживающую активный мембранный слой (рис. 2). Пористая керамика состоит из связанных частиц примерно одного размера, что создает однородный, проницаемый материал, обеспечивающий извилистые каналы для потока флюида. Наиболее часто для изготовления фильтров используются кремнезем и глинозем, хотя возможности выбора материала, размера и формы практически неограничены. Керамические фильтры обычно классифицируются по среднему диаметру пор или / и по проницаемости. Средний диаметр пор это средний минимальный диаметр пор, измеренный в микронах. Размеры мембран керамических фильтров: - микрофильтрация: 1,2 мкм 0,5 мкм 0,2 мкм 0,1мкм; - ультрафильтрация: 50 нм 20 нм. Макропористые материалы обеспечивают механическую устойчивость, в то время как активный мембранный слой обеспечивает разделение: микрофильтрация, ультрафильтрация, нанофильтрация. Керамические мембранные фильтры всегда работают в режиме тангенциальной фильтрации с оптимальными гидродинамическими режимами. Мутная жидкость проходит через мембранный слой внутри одно- или мультиканальной мембраны на большой скорости. Под действием трансмембранного давления (ТМД) микромолекулы и вода проходят вертикально через мембранный слой, образуя поток пермеата. Взвешенные вещества и высокомолекулярные соединения задерживаются внутри мембраны, образуя поток концентрата. Таким образом, происходит очистка загрязненных жидкостей. Керамические мембраны позволяют физическим методом разделить смеси компонентов без применения добавок. Внесение же в данные системы углеродного нанотрубного материала может дополнительно повысить эффективность подобного фильтра. 3. Макет фильтра на основе углеродных нанотрубок в оболочке из пористого стекла Для создания макета фильтра, через который осуществлялось вертикальное пропускание спиртосодержащей жидкости (рис. 3), использовались стеклянные фильтры Шотта, изготовленные из пористого стекла с помещенным внутрь углеродным наноматериалом углеродными нанотрубками, полученными на установке CVDomna по методике, описанной в работе И.В. Запороцковой . Фильтровальная часть использовавшихся фильтров представляет собой стеклянное пористое вещество Рис. 1. Пористая керамика Рис. 2. Керамический фильтр Вестник ВолГУ. Серия 10. Вып

4 с размером мембран 4 10 мкм. Для предварительного макета были использованы два фильтра Шотта разного диаметра, которые состыковывались между собой, образуя замкнутую фильтрующую систему. Между пластинами стекла, размеры пор которых составляли 4 10 мкм, помещался слой углеродных нанотрубок. Увеличенное изображение пористого стекла представлено на рисунке 4. Для обеспечения замкнутости углеродные нанотрубки дополнительно помещались между слоями фильтровальной бумаги. Исследуемый продукт водка «Выпьем за» свободно вертикально протекал через созданный таким образом фильтр под действием силы тяжести. Количество фильтрующего углеродного наноматериала и объем спиртосодержащей жидкости, протекающей через изготовленный фильтр, были выбраны в соответствии с полученными ранее результатами: 0,001 г УНТ для очистки 50 мл водки. Данные типы фильтров оказались достаточно эффективными для обеспечения свободного протекания через них водно-этанольной смеси без проникновения сквозь стекло углеродного наноматериала, что может быть объяснено случайным расположением пор в облочке. Выполненные далее исследования качества очищаемого продукта с использованием методов молекулярной спектроскопии и жидкостной хроматографии (рис. 5, 6) подтвердили высокую степень очистки водки от примесей высокомолекулярных спиртов сивушных масел: на спектрах отсутствуют пики, относящиеся к этим спиртам. Результаты титрования водки «Выпьем за» различным количеством углеродных нанотрубок Рис. 3. Макет фильтра с пластинами из пористого стекла Рис. 4. Вид стеклянной пластинки с размерами пор 4 10 мкм при увеличении х Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок

5 Пропускание, % Волновое число, см -1 Рис. 5. ИК спектры водки «Выпьем за»: красный спектр до очистки; фиолетовый спектр после очистки пропусканием через фильтр с углеродными нанотрубками а Заключение Выполненные экспериментальные исследования доказали, что обработка водно-этанольной смеси углеродными нанотрубками способствует уменьшению содержания сивушных масел и других примесных веществ, сохраняя б Рис. 6. Хроматограммы водки «Выпьем за»: а) до очистки; б) после очистки пропусканием через фильтр с углеродными нанотрубками при этом содержание основного полезного компонента продукта этилового спирта. Созданный и апробированный макет фильтра на основе углеродных нанотрубок, заключенных в оболочку из пористого стекла, может быть использован в качестве основы для создания промышленного фильтра. Дальнейшие исследования Вестник ВолГУ. Серия 10. Вып

6 будут направлены на создание макета фильтра с керамической оболочкой, меньшие размеры пор которого (по сравнению с порами стеклянной оболочки) могут обеспечить лучшую защиту очищаемого продукта от попадания в него углеродных наночастиц. СПИСОК ЛИТЕРАТУРЫ 1. Беркман, А. С. Пористая проницаемая керамика / А. С. Беркман. М. : Госстройиздат, с. 2. Васильев, В. П. Аналитическая химия. Титриметрические и гравиметрические методы анализа: учебник / В. П. Васильев. М. : Дрофа, с. 3. Гармаш, Е. П. Керамические мембраны для ультра- и микрофильтрации / Е. П. Гармаш, Ю. Н. Крючков, В. П. Павликов // Стекло и керамика С ГОСТ Р Водки и водки особые. Общие технические условия. Государственный стандарт Российской Федерации. М. : Госстандарт России, с. 5. Запороцкова, И. В. Перспективные наноматериалы на основе углерода / И. В. Запороцкова, Л. В. Кожитов, В. В. Козлов // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Запороцкова, И. В. Сорбционная активность углеродных нанотрубок как основа инновационной технологии очистки водно-этанольных смесей / И. В. Запороцкова, Н. П. Запороцкова, Т. А. Ермакова // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Запороцкова, И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства / И. В. Запороцкова. Волгоград: Из-во ВолГУ, с. 8. Исследование влияния углеродных нанотруб на процесс очистки спиртосодержащих жидкостей / И. В. Запороцкова [и др.] // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Казицына, Л. А. Применение УФ-, ИК-, ЯМР-спектроскопии в органической химии: учеб. пособие для вузов / Л. А. Казицына, Н. Б. Куплетская. М. : Высш. шк., с. 10. Сычев, С. Н. Высокоэффективная жидкостная хроматография как метод определения фальсификации и безопасности продукции / С. Н. Сычев, В. А. Гаврилина, Р. С. Мурзалевская. М. : ДеЛи принт, с. 11. Химическая энциклопедия / под ред. И. Л. Кнунянца. М. : Советская энциклопедия, Dresselhaus, M. S. / M. S. Dresselhaus, G. Dresselhaus, P. Avouris // Сarbon nanotubes: synthesis, structure, properties, and application. Springer-Verlag, p. 13. Zaporotskova, I. V. Active properties of nanotubular carbon structures with respect to heavy organic molecules / I. V. Zaporotskova // Nanoscience & nanotechnology-2011: Book of abstract. Frascati National Laboratories INFN. Frascati, Sept , Frascati: INFN, P Zaporotskova, N. P. Investigation of carbon nanotube activity to heavy organic molecules / N. P. Zaporotskova, I. V. Zaporotskova, T. A. Ermakova // Fullerenes and Atomic clusters. Abstracts of invited lectures & contributed papers. St.-Peterburg, July 4 8, St.-Peterb., P THE FILTER ON THE BASIS OF CARBON NANOTUBES FOR PURIFICATION OF ALCOHOL-CONTAINING LIQUIDS N.P. Polikarpova, I.V. Zaporotskova, T.A. Ermakova, P.A. Zaporotskov Experiments on purification of alcohol-containing liquids by filtration and transmission methods are made, the mass fraction of carbon nanotubes leading to the best result is established. The filter model on the basis of a nanomaterial concluded in space between layers of porous glass is created, and its constructional features are defined. Key words: carbon nanotubes, alcohol-containing liquids, adsorption, filter, porous glass, porous ceramics. 8 0 Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок


Инженерные системы и экология УДК 628.316.12 ИСПОЛЬЗОВАНИЕ ПРИРОДНОГО МИНЕРАЛА В КАЧЕСТВЕ СОРБЕНТА ФЕНОЛА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД А. В. Юрко, А. Ю. Комаров, В. А. Романов Волгоградский государственный

Тема проекта: «Очистка родниковой воды» Автор(ы): Рудюк Елена Школа: ГБОУ СОШ 2103 СП «СОШ 125» Класс: 3 Руководитель: Хромова Юлия Михайловна ЦЕЛЬ: узнать, какие фильтры для очистки воды существуют ЗАДАЧИ

УДК 21474 ПРИМЕНЕНИЕ МЕМБРАННЫХ ТЕХНОЛОГИЙ В БИОЛОГИЧЕСКОЙ ОЧИСТКЕ СТОЧНЫХ ВОД Вязьмикина К.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Экология и промышленная безопасность»

ФИЗИКА. МЕХАНИКА. ХИМИЯ УДК 666.9.017:536.4:539.21:536.12 (575.2) (04) ВЛИЯНИЕ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ НА ПРОНИЦАЕМОСТЬ ПОРИСТОЙ ВОЛЛАСТОНИТОВОЙ КЕРАМИКИ А.Н. Айтимбетова Установлено влияние на проницаемость

Ротационная фильтрация Микрофильтрация 1 50 мкм Ультрафильтрация 0,007 1 мкм.ru О компании Проектно-производственный холдинг «Энергетические машины» специализируется на проектировании и изготовлении котельного

УДК 661.183 Е. А. Нескоромная, А. В. Бабкин, А. Е. Бураков, И. В. Романцова, А. Е. Кучерова СОЗДАНИЕ ГИБРИДНЫХ УГЛЕРОДНЫХ НАНОСОРБЕНТОВ КОМПЛЕКСНОЙ ОЧИСТКИ ВОДНЫХ СРЕД На сегодняшний день в мире очень

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

ОТЧЕТ по гранту 16-03-717 за 2016 год К важнейшим результатам, полученным нами в результате работы в 2016 году по гранту 16-03-717, можно отнести следующее: 1. Удалось распространить принцип минимума интенсивности

Вопросы для контроля в семестре 1. Что означает относящийся к созданию нанообъектов термин "Top down"? 2. Что означает относящийся к созданию нанообъектов термин "Bottom up"? 3. Какой принцип стабилизации

Будущее за ротационной фильтрацией Проектно-производственный холдинг «Энергетические машины» предлагает решение проблемы непрерывной микро- и ультрафильтрации с помощью так называемых «технологий поперечного

Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа 16» с изменениями от 16.12.2016 г. РАБОЧАЯ ПРОГРАММА по предмету «химия» 8-9 класс (ФК ГОС) 1.Требования к уровню

КОНИЧЕСКАЯ ЦЕНТРИФУГА ДЛЯ ОЧИСТКИ СОЕВОГО МАСЛА. ИСПОЛЬЗОВАНИЕ ЦЕОЛИТОВОЙ ФИЛЬТРОВАЛЬНОЙ ПЕРЕГОРОДКИ В.И. Земсков, Г.М. Харченко Приведена экспериментальная зависимость плотности и вязкости соевого масла

УДК 502.654 Клещенко В.В. Науч. рук. Басалай И. А. Методы пылегазоочистки и оборудование, используемые при производстве керамических материалов Белорусский национальный технический университет При производстве

Опыт реализации инновационных энергосберегающих технологий, на основе наномодифицированной проницаемой керамики в процессах водоподготовки и очистки сточных вод 1 service and products НТЦ Бакор 25 лет

УДК 544.723.212 Е. В. Парамонова, А. П. Суздальцев, О. Ю. Шишкина, Ю. В. Чернопятова ПРИРОДНЫЕ СОРБЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ Сточные воды промышленных производств

Рабочая программа элективного курса по химии в профильном классе является компилятивной. Данный элективный курс предназначен для учащихся 0 классов выбирающих естественнонаучное направление, рассчитан

Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

Задание 6 (-ой семестр). Адсорбция. Хроматография. Вариант. Часть. Приведите примеры поверхностно-активных веществ (ПАВ)? Схематично изобразите, как ориентируются молекулы ПАВ на границе раздела вода-воздух.

Лекция 16 Обратный осмос и ультрафильтрация Методы обратного осмоса и ультрафильтрации заключаются в фильтровании растворов через специальные полупроницаемые мембраны. При этом либо мембрана пропускает

ОЧИСТКА СТОЧНЫХ ВОД ОТ ФЕНОЛА С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНЫХ СОРБЦИОННЫХ МАТЕРИАЛОВ 48 Д.Е. Плешивцева Содержащиеся в сточных водах органические вещества, попадая в значительных количествах в водоёмы или скапливаясь

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

8а домашнее задание 04.02.2019 География контурная карта стр. 8 Физкультура П.18 стр 125-126 Значение и история развития волейбола Литература Стр. 62-68 (статьи учебника прочитать), стр. 68 (стихотворение

Лабораторная работа 5 СПИРТЫ ЦЕЛЬ РАБОТЫ: изучить некоторые физические и химические свойства предельных одноатомных спиртов. Отметить качественную реакцию на многоатомные спирты. Реактивы и материалы:

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ РАБОТЫ В ОБЛАСТИ СОЗДАНИЯ ТЕХНОЛОГИЙ С ИНТЕГРИРОВАННЫМИ МЕМБРАННЫМИ ПРОЦЕССАМИ: ОТ КОНЦЕПЦИИ ДО ПРОМЫШЛЕННЫХ ЛИНИЙ Актуализация 02.2014 ООО «ЭЛЕВАР-ГРУПП» ОПЫТ СОЗДАНИЯ ТЕХНОЛОГИЙ

Вопросы обеспечения материалами высокотехнологичных отраслей России Абрамов А.О,. Гришко Н.Е. [email protected] Научный руководитель: к.т.н. Дитц А.А., доцент кафедры ТСН ИФВТ НИ ТПУ Объем мирового

УДК 621.762:669.2 В.М. КЕТОВ, научн. сотрудн., Е.И. ДЕМЧЕНКО, научн. сотрудн., А.А. ВНУКОВ, научн. сотрудн., Национальная металлургическая академия Украины, г. Днепропетровск, Украина ИССЛЕДОВАНИЕ ВЛИЯНИЯ

МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Aqua Ideal Детальная характеристика модулей SW300 и SW100 www.ecohitek.com Внешний вид Модуль SW300 Схематическое изображение внутренних компонентов Технические характеристики: Размеры: высота 470 мм ширина

4024 Энантиоселективный синтез этилового эфира (1R,2S)- цис-гидроксициклопентанкарбоновой кислоты H yeast C 8 H 12 3 C 8 H 14 3 (156.2) (158.2) Классификация Типы реакций и классы веществ Восстановление,

1815 Взаимодействие разбавленных кислотных растворов с бариево-боратным стеклом Керефов А.Х. ([email protected]), Калинина Н.В., Ашхотов О.Г. Кабардино-Балкарский государственный университет, г. Нальчик

УДК 681.5 ПРОЕКТИРОВАНИЕ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ОЧИСТКИ МЕТАНА Ефремкин С.И., Медведева Л.И. Волжский политехнический институт (филиал) ВолгГТУ E-mail: [email protected] В статье

КАТАЛИТИЧЕСКОЕ ГИДРИРОВАНИЕ СМОЛОСОДЕРЖАЩИХ ОСТАТКОВ КОКСОХИМИЧЕСКОГО ПРОИЗВОДСТВА НА Pt/Pd КАТАЛИЗАТОРЕ Маринин А.А. студент группы ХТОВ-13, Меркулов В.В. кандидат химических наук, профессор РАЕ, старший

Аннотация проекта (ПНИЭР), выполняемого в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Номер Соглашения о предоставлении

ИССЛЕДОВАНИЕ ПРОЦЕССА УЛЬТРАФИЛЬТРАЦИИ СУЛЬФИТНОГО ЩЕЛОКА А. П. Вишнякова, Т.Ф. Личутина, О.С. Бровка Институт экологических проблем Севера УрО РАН, г. Архангельск. Перспективность использования многотоннажных

ПОЛУЧЕНИЕ КОМПОЗИТНЫХ НАНОСТРУКТУР НА ОСНОВЕ ПОРИСТОЙ МАТРИЦЫ АНОДИРОВАННОГО АЛЮМИНИЯ Русинов А.П., Мухин А.А. Оренбургский государственный университет, г. Оренбург Бурное развитие микроэлектроники и информационных

ВЛИЯНИЕ УГОЛЬНЫХ ФИЛЬТРОВ НА ТОКСИЧНОСТЬ ТАБАЧНОГО ДЫМА СИГАРЕТ Дурунча Н.А.; Остапченко И.М. ФГБНУ «Всероссийский научно-исследовательский институт табака, махорки и табачных изделий», г. Краснодар Важнейшим

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

П\п Тема Урок I II III 9 класс, 2014-2015 учебный год, базовый уровень, химия Тема урока Колво часов Примерные сроки Знания, умения, навыки. Теория электролитической диссоциации (10 часов) 1 Электролиты

УДК 661.66-022.53 С. Ю. Горский ГАЗОФАЗНОЕ ОКИСЛЕНИЕ УГЛЕРОДНЫХ НАНОТРУБОК: ПРОБЛЕМЫ ПРОМЫШЛЕННОЙ РЕАЛИЗАЦИИ Окисление является одним из наиболее простых, доступных и распространенных способов ковалентной

Задание 7. Коллоидная химия. Вариант 1. Во сколько раз отличаются радиусы частиц двух монодисперсных суспензий (1 и 2) одинаковой 1. природы, если отношение скоростей седиментации равно U 1 /U 2 = 25?

07/2017:20408 2.4.8. ТЯЖЕЛЫЕ МЕТАЛЛЫ В методах, приведенных ниже, используют тиоацетамидный реактив Р. Допускается использование раствора натрия сульфида Р1 (0,1 мл). Если указанная в частной фармакопейной

СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ Изучение химии на ступени основного общего образования направлено на достижение следующих целей: освоение важнейших знаний об основных понятиях и законах

Калабеков О.А., Кудряшов А.Ф., Кудряшова Н.В., Москалёв Е.В. Разработка технологии промышленного получения вспененного графита и создание ассортимента бактерицидных фильтров на его основе для применения

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

Задание 1. Ученые считают, что в окружающей нас природе практически отсутствуют индивидуальные чистые вещества, поскольку все они, хоть и в ничтожных долях, содержат примеси. Как природные, так и искусственно

УДК 504.06 Получение сорбентов из растительных отходов и их применение в средозащитных технологиях Тольяттинский государственный университет Валиуллина Венера, студент, Чадаева Татьяна, студент Заболотских

ПРИМЕРНОЕ КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА ХИМИЯ-8 2014/2015 учебный год Составлено на основании государственной программы Е.Е. Минченкова при 2 часах в неделю (70 часов за год) Работы I полугодие

НЕМНОГО О КОМПАНИИ SULPHURNET Мы в Sulphurnet сосредоточили свою деятельность на процессах переработки серы в установках по производству серной кислоты и повторной переработки серы. Sulphurnet понимает

УДК 54 ПОЛУЧЕНИЕ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА АНИОНООБМЕННЫМ СИНТЕЗОМ Данилина А. А., научный руководитель канд. хим. наук Сайкова С. В. Сибирский федеральный университет Функциональные материалы на основе

Достижения современных технологий для фильтрации жидкостей. Фильтр картон и кизельгуры (диатомиты) в настоящее время это наиболее распространенные и используемые фильтр материалы в фармацевтической и пищевойпромышленности.

Муниципальное бюджетное общеобразовательное учреждение «Усть-Кяхтинская средняя общеобразовательная школа» Практические работы по химии 8 класс (34 часа) Халимова Наталья Николаевна Усть-Кяхта 2017 Программа

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 11» Рассмотрено на заседании педагогического совета Протокол от Согласовано Зам. директора по УВР М.Н.Шабурова

УДК 61.7 ЛИТЕЙНЫЕ ТИГЛИ НА МЕХАНОАКТИВИРОВАННЫХ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРНЫХ КОМПОЗИЦИЯХ Чупров И. В., Ширай А. М., научный руководитель д-р техн. наук Мамина Л. И., канд. техн. наук Баранов В. Н., канд.

Нестандартные задачи по химии: от простого к сложному В.В. Еремин Химический факультет МГУ Университетские субботы. 03 октября 2015 1 Необычная массовая доля Определите формулу углеводорода, в котором

9 s 1. Определите энергию Гиббса (G) поверхности капель водяного тумана массой 4г при 293 К, если поверхностное натяжение воды 72,7 мдж/м 2, плотность воды 0,998 г/см 3, дисперсность частиц 50 мкм 1.

Из практических способов использования керамики состоит в изготовлении деталей поршня из металло- или полимерокомпозиционных материалов. Матрицей (основой) первого типа материалов является алюминий или

УДК 628.35+532.528 АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ОБЕЗЖЕЛЕЗИВАНИЯ СТОЧНЫХ ВОД ПРЕДПРИЯТИЙ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВДСТВА Черных О.И., научный руководитель канд. техн. наук Дубровская О.Г. Сибирский Федеральный Университет

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ХИМИИ ПО ОСНОВНЫМ ОБРАЗОВАТЕЛЬНЫМ ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2019 году 1. Периодический закон и периодическая система химических

МИНИСТЕРСТВО ЗДРАВОО ОХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИИ ФАРМАК КОПЕЙНАЯ СТАТЬЯ Я Глицерин Глицерин Glycerolum ФС.2.2.00 006.15 Взамен В ФС 42-2202-99 Пропан-1,2,3-триол С 3 H 8 O 3 М. м. 92,09 Содержит не

Вариант 1. 1 При уменьшении концентрации новокаина в растворе с 0,2 моль/л до 0,15 моль/л поверхностное натяжение возросло с 6,9 10-2 н/м до 7,1 10-2 н/м. У раствора кокаина с 6,5 10-2 до 7,0 10-2 н/м.

Оборудование лаборатории химии Оборудование Наименования Количество ОБОРУДОВАНИЕ СЕЙФЫ ЛАБОРАТОРНАЯ ПОСУДА, ПРИБОРЫ И ОБОРУДОВАНИЕ ДЛЯ ДЕМОНСТРАЦИЙ Мойка для мытья химической посуды Лабораторные столы

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 2 Принято с пролонгацией: Педагогическим советом Протокол 1 от «30» августа 2016 г. РАБОЧАЯ ПРОГРАММА учебный предмет

ТЕХНИЧЕСКИЕ ИННОВАЦИИ УДК 539.2.21 ББК 30.6 ОБ АДСОРБЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА НА ВНЕШНЕЙ ПОВЕРХНОСТИ БОРНОЙ И БОРОНИТРИДНОЙ НАНОТРУБ 1 И.В. Запороцкова, Е.В. Перевалова, С.В. Борознин В связи с возросшим

1 Данная рабочая программа ориентирована на обучающихся 9 класса по программе основного общего образования (базовый уровень) по ФКГОС. Рабочая программа рассчитана на 68 часов в год, 2 часа в неделю. базисного

Углеродные нанотрубки - завтрашний день инновационных технологий. Производство и внедрение нанотубуленов позволит улучшить качества товаров и изделий, значительно снизив их вес и увеличив прочность, а также наделив новыми характеристиками.

Углеродные нанотрубки или тубулярная наноструктура (нанотубулен) - это искусственно созданные в лабораторных условиях одно или многостенные полые цилиндрические структуры, получаемые из атомов углерода и обладающие исключительными механическими, электрофизическими и физическими свойствами.

Углеродные нанотрубки получаются из атомов углерода и имеют форму трубок или цилиндров. Они очень маленькие (на наноуровне), с диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров. Углеродные нанотрубки состоят из графита, но обладают другими, не свойственными графиту характеристиками. Они не существуют в природе. Их происхождение имеет искусственную основу. Тело нанотрубок синтетическое, создаваемое людьми самостоятельно от начала до конца.

Если посмотреть на увеличенную в миллион раз нанотрубку, то можно увидеть вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость. От хиральности нанотрубки зависят её физические характеристики и свойства.

Увеличенная в милион раз нанотрубка представляет собой вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость

Хиральность (англ. chirality) - свойство молекулы не совмещаться в пространстве со своим зеркальным отражением.

Если попонятнее, то хиральность - это когда сворачиваешь, например, лист бумаги ровно. Если наискось, то это уже ахиральность. Нанотубулены могут иметь однослойную и многослойную структуры. Многослойная структура - это ничто иное, как несколько однослойных нанотрубок, «одетых» одна на одну.

История открытия

Точная дата открытия нанотрубок и их первооткрыватель неизвестны. Эта тема является пищей для споров и рассуждений, так как существует множество параллельных описаний этих структур учёными из разных стран. Основная сложность в идентификации первооткрывателя заключается в том, что нанотрубки и нановолокна, попадая в поле зрения учёных, длительное время не привлекали их пристального внимания и тщательно не исследовались. Существующие научные работы доказывают, что возможность создания нанотрубок и волокон из углеродсодержащих материалов теоретически допускалась ещё во второй половине прошлого столетия.

Основная причина, по которой длительное время не проводились серьёзные исследования микронных углеродных соединений, заключается в том, что на тот момент учёные не обладали достаточно мощной научной базой для исследований, а именно не было оборудования, способного в нужной степени увеличивать объект изучения и просвечивать их структуру.

Если расположить события по исследованию наноуглеродистых соединений в хронологическом порядке, то первое свидетельство приходится на 1952 год, когда советскими учёными Радушкевичем и Лукьяновичем было обращено внимание на нановолокнистую структуру, образованную при разложении термическим способом оксида углерода (русское название - окись). Наблюдаемая с помощью электронно-микроскопического оборудования структура имела волокна диаметром около 100 нм. К сожалению, дальше фиксации необычной наноструктуры дело не пошло и дальнейших исследований не последовало.

После 25 лет забвения начиная с 1974 года информация о существовании микронных трубчатых структур из углерода начинает попадать в газеты. Так, группой японских учёных (Т. Койяма, М. Эндо, А. Оберлин) во время исследований в 1974–1975 гг. были представлены широкой публике результаты ряда своих исследований, в которых содержалось описание тонких трубок с диаметром менее 100 Å, которые были получены из паров при конденсации. Также образование пустотелых структур с описанием строения и механизма образования, полученных при исследовании свойств углерода, описаны советскими учёными института катализа СО АН СССР в 1977 году.

Å (Агстрём) - единица измерения расстояний, равная 10−10 м. В системе СИ единицей, близкой по величине к ангстрему, является нанометр (1 нм = 10 Å).

Фуллерены - полые, сферообразные молекулы в форме шара или мяча для регби.


Фуллерены - четвёртая, ранее неизвестная, модификация углерода, открытая английским химиком и астрофизиком Харолдом Крото

И только после использования в своих научных исследованиях новейшего оборудования, позволяющего детально рассматривать и просвечивать углеродную структуру нанотрубок, японским учёным Сумио Иджимой (Sumio Iijima) в 1991 году были проведены первые серьёзные исследования, в результате которых удалось получить опытным путём углеродные нанотрубки и детально их исследовать.

В своих исследованиях профессор Иджима для получения опытного образца воздействовал на распылённый графит электродуговым разрядом. Прототип был тщательно замерен. Его размеры показали, что диаметр нитей (каркаса) не превышает нескольких нанометров, при длине от одного до нескольких микрон. Изучая структуру углеродной нанотрубки, учёным было установлено, что изучаемый объект может иметь от одной до нескольких слоёв, состоящих из графитовой гексагональной сетки на основе шестиугольников. При этом концы нанотрубок структурно напоминают рассечённую надвое половинку молекулы фуллерена.

На момент проведения вышеуказанных исследований уже существовали работы таких известных в своей области учёных, как Джонса, Л.А. Чернозатонского, М.Ю. Корнилова, предсказывающих возможность образования данной аллотропной формы углерода, описывающих её строение, физические, химические и прочие свойства.


Многослойная структура нанотрубки это ничто иное, как несколько однослойных нанотубуленов, «одетых» одна на одну по принципу русской матрёшки

Электрофизические свойства

Электрофизические свойства углеродных нанотрубок находятся в стадии самого пристального изучения учёными сообществами всего мира. Проектируя нанотрубки в определённых геометрических соотношениях, можно придать им проводниковые или полупроводниковые свойства. Например, алмаз и графит являются углеродом, но вследствие различия в молекулярной структуре обладают различными, а в некоторых случаях противоположными свойствами. Такие нанотрубки называют металлическими или полупроводниковыми.

Нанотрубки, которые проводят электрический ток даже при абсолютном нуле температур, являются металлическими. Нулевая проводимость электрического тока при абсолютном нуле, которая возрастает с повышением температуры, указывает на признак полупроводниковой наноструктуры.

Основная классификация распределяется по способу сворачивания графитовой плоскости. Способ сворачивания обозначается двумя числами: «m» и «n», которые задают направление сворачивания по векторам графитовой решётки. От геометрии сворачивания графитовой плоскости зависят свойства нанотрубки, например, угол скручивания непосредственно влияет на их электрофизические свойства.

В зависимости от параметров (n, m) нанотрубки бывают: прямые (ахиральные), зубчатые («кресло»), зигзагообразные и спиральные (хиральные). Для расчёта и планирования электропроводности используют формулу соотношений параметров: (n-m)/3.

Целое число, получаемое при расчёте, свидетельствует о проводимости нанотрубки металлического типа, а дробное - полупроводниковой. Например, металлическими являются все трубки типа «кресло». Углеродные нанотрубки металлического типа проводят электрический ток при абсолютном нуле. Нанотубулены полупроводникового типа обладают нулевой проводимостью при абсолютном нуле, которая возрастает с повышением температуры.

Нанотрубки с металлическим типом проводимости ориентировочно могут пропускать миллиард ампер на квадратный сантиметр. Медь, являясь одним из лучших металлических проводников, уступает нанотрубкам по этим показателям более чем в тысячу раз. При превышении предела проводимости происходит нагрев, который сопровождается плавлением материала и разрушением молекулярной решётки. С нанотубуленами при равных условиях этого не происходит. Это объясняется их очень высокой теплопроводностью, которая превышает показатели алмаза в два раза.

По показателям прочности нанотубулен также оставляет другие материалы далеко позади. Он прочнее самых прочных сплавов стали в 5–10 раз (1,28–1,8 ТПа по модулю Юнга) и обладает упругостью в 100 тысяч раз выше чем каучук. Если сравнить показатели предела прочности, то они превышают аналогичные прочностные характеристики качественной стали в 20–22 раза!

Как получают УН

Нанотрубки получают высокотемпературным и низкотемпературным способами.

К высокотемпературным можно отнести способы лазерной абляции, солярной технологии или электродугового разряда. Низкотемпературный способ вобрал в себя химическое осаждение из паровой фазы с использованием каталитического разложения углеводородов, газофазное каталитическое выращивание из монооксида углерода, производство путём электролиза, термообработка полимера, местный низкотемпературный пиролиз или местный катализ. Все способы сложны для понимания, высокотехнологичны и очень затратны. Производство нанотрубок может себе позволить только крупное предприятие с мощной научной базой.

Упрощённо, процесс получения нанотрубок из углерода дуговым способом выглядит следующим образом:

В нагретый до определённой температуры с замкнутым контуром реактор через инъекционный аппарат вводится плазма в газообразном состоянии. В реакторе, в верхней и нижней части, устанавливаются магнитные катушки, одна из которых является анодом, а другая катодом. На магнитные катушки подаётся постоянный электрический ток. На находящуюся в реакторе плазму воздействуют электрической дугой, которую вращают и магнитным полем. Под действием высокотемпературной электроплазменной дуги с поверхности анода, который состоит из углеродсодержащего материала (графита), испаряется или «выщёлкивается» углерод и конденсируется на катоде в виде углеродистых нанотрубок, содержащихся в осадке. Для того чтобы атомы углерода имели возможность конденсироваться на катоде, температуру в реакторе снижают. Даже краткое описание этой технологии позволяет оценить всю сложность и затратность получения нанотубуленов. Пройдёт ещё немало времени, прежде чем процесс производства и применения станет доступным для большинства предприятий.

Фотогалерея: Схема и оборудование для получения нанотрубок из углерода

Установка по синтезу одностенных углеродных нанотрубок электродуговым способом Научная установка небольшой мощности для получения тубулярной наноструктуры
Низкотемпературный способ получения

Установка для получения длинных углеродных нанотрубок

Токсичны ли?

Однозначно, да.

В процессе лабораторных исследований учёные пришли к выводу, что углеродные нанотрубки негативно влияют на живые организмы. Это, в свою очередь, подтверждает токсичность нанотрубок, и все реже приходится учёным сомневаться в этом немаловажном вопросе.

Как показали исследования, прямое взаимодействие углеродных нанотрубок с живыми клетками приводит к их гибели. Особенно однослойные нанотрубки обладают сильной противомикробной активностью. Опыты учёные начали проводить на распространённой культуре царства бактерий (кишечная палочка) Е-Соli. В процессе исследований были применены однослойные нанотрубки диаметром от 0,75 до 1,2 нанометров. Как показали проведённые опыты, в результате воздействия углеродных нанотрубок на живую клетку происходит повреждение механическим способом клеточных стенок (мембран).

Нанотрубки, получаемые другими способами, содержат в себе большое количество металлов и других токсичных примесей. Многие учёные предполагают, что сама токсичность углеродных нанотрубок не зависит от их морфологии, а связана напрямую с примесями, содержащимися в них (нанотрубках). Однако проведённые работы учёных из Йеля в области исследования нанотрубок показали ошибочное представление многих сообществ. Так, бактерии кишечной палочки (Е-Соli) в процессе исследований подвергались обработке однослойными углеродными нанотрубками в течение одного часа. В результате большая часть Е-Соli погибла. Данные исследования в области наноматериалов подтвердили их токсичность и негативное воздействие на живые организмы.

Учёные пришли к выводу, что наиболее опасными являются однослойные нанотрубки, это связано с пропорциональным отношением длины углеродной нанотрубки к её диаметру.

Различные исследования в части влияния углеродных нанотрубок на организм человека привели учёных к выводу о тождественном воздействии, как и в случае попадания асбестовых волокон в организм. Степень негативного воздействия асбестовых волокон напрямую зависит от их размера: чем меньше, тем отрицательное воздействие сильнее. А в случае углеродных нанотрубок и сомневаться не приходится в их отрицательном влиянии на организм. Попадая в организм вместе с воздухом, нанотрубка через плевру оседает в грудной клетке, тем самым вызывая тяжёлые осложнения, в частности, раковые опухоли. Если проникновение в организм нанотубуленов происходит через пищу, то они оседают на стенках желудка и кишечника, вызывая различные заболевания и осложнения.

В настоящее время учёными проводятся исследования по вопросу биологической совместимости наноматериалов и поиску новых технологий безопасного производства углеродных нанотрубок.

Перспективы

Углеродные нанотрубки занимают широкую сферу применения. Это связано с тем, что они имеют молекулярную структуру в виде каркаса, позволяющую тем самым иметь свойства, отличающиеся от алмаза или графита. Именно благодаря своим отличительным чертам (прочность, проводимость, изгиб) углеродные нанотрубки применяются чаще, в сравнении с другими материалами.

Применяется это углеродное изобретение в электронике, оптике, в машиностроении и т. д. Углеродные нанотрубки используют как добавки к различным полимерам и композитам для усиления прочности молекулярных соединений. Ведь всем известно, что молекулярная решётка углеродных соединений обладает невероятной прочностью, тем более в чистом виде.

Углеродные нанотрубки используются также в производстве конденсаторов и различного рода датчиков, анодов, которые необходимы для изготовления батареек, в роли поглотителя электромагнитных волн. Широкое применение это углеродное соединение нашло в сфере изготовления телекоммуникационных сетей и жидкокристаллических дисплеев. Также нанотрубки используются в качестве усилителя каталитических свойств в производстве осветительных устройств.

Коммерческое применение

Рынок Применение Свойства составов на основе углеродных нанотрубок
Автомобили Детали топливной системы и топливопроводы (соединители, детали насоса, уплотнительные кольца, трубки), внешние кузовные детали для электроокраски (бамперы, корпуса зеркал, крышки топливных баков) Улучшенный баланс свойств по сравнению с техническим углеродом, способность к переработке для крупных частей, устойчивость к деформации
Электроника Технологические инструменты и оборудование, кассеты для полупроводниковых пластин, конвейерные ленты, объединительные блоки, оборудование для чистых комнат Повышенная чистота смесей по сравнению с углеродными волокнами, контроль удельного сопротивления поверхности, способность к обработке для отливки тонких частей, устойчивость к деформации, сбалансированность свойств, альтернативные возможности пластмассовых смесей по сравнению с углеродными волоконами

Углеродные нанотрубки не ограничены определёнными рамками по применению в различных отраслях промышленности. Материал изобретён относительно недавно, и, в связи с этим, в настоящее время широко применяется в научных разработках и исследованиях многих стран мира. Это необходимо для более детального изучения свойств и характеристик углеродных нанотрубок, а также налаживания масштабного производства материала, так как в настоящее время он занимает довольно слабые позиции на рынке.


Для охлаждения микропроцессоров применяют углеродные нанотрубки

Благодаря хорошим проводящим свойствам использование углеродных нанотрубок в машиностроении занимает широкий спектр. Этот материал используют в качестве устройств по охлаждению агрегатов, имеющих массивные размеры. В первую очередь это связано с тем, что углеродные нанотрубки имеют высокий удельный коэффициент теплопроводности.

Применение нанотрубок в разработках компьютерных технологий занимает важную роль в электронной промышленности. Благодаря применению этого материала налажено производство по изготовлению довольно плоских дисплеев. Это способствует выпуску компьютерной техники компактных размеров, но при этом не теряются, а даже увеличиваются технические характеристики электронно-вычислительных машин. Применение углеродных нанотрубок в разработках компьютерных технологий и электронной отрасли позволит достичь производства оборудования, которое в разы будет превосходить по техническим характеристикам нынешние аналоги. На основе данных исследований уже сейчас создаются высоковольтные кинескопы.


Первый процессор из углеродных нанотрубок

Проблемы использования

Одна из проблем применения нанотрубок заключается в негативном влиянии на живые организмы, что ставит под сомнение использование этого материала в медицине. Некоторые из экспертов предполагают, что в процессе массового производства углеродных нанотрубок могут возникнуть неоценённые риски. То есть в результате расширения областей применения нанотрубок возникнет потребность в их производстве в широких масштабах и, соответственно, возникнет угроза окружающей среде.

Учёные предлагают искать пути решения этой проблемы в применении более экологически чистых методов и способов производства углеродных нанотрубок. Также было предложено производителям этого материала серьёзно подойти к вопросу «очистки» последствия СVD-техпроцесса, что, в свою очередь, может сказаться на увеличении стоимости выпускаемой продукции.

Фото негативного воздействия нанотрубок на на клетки а) клетки кишечной палочки до воздействия нанотрубок; b) клетки после воздействия нанотрубок

В современном мире углеродные нанотрубки вносят весомый вклад в области развития инновационных технологий. Специалисты дают прогнозы по увеличению в ближайшие годы производства нанотрубок и к снижению цен на данную продукцию. Это, в свою очередь, расширит сферы применения нанотрубок и увеличит потребительский спрос на рынке.


Владельцы патента RU 2430879:

Изобретение относится к нанотехнологии и может быть использовано в качестве компонента композиционных материалов. Многослойные углеродные нанотрубки получают пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а также Al 2 O 3 , MgO, СаСО 3 в качестве носителей. Полученные нанотрубки очищают кипячением в растворе соляной кислоты с дальнейшей промывкой водой. После кислотной обработки проводят прогрев в токе высокочистого аргона в печи с градиентом температур. В рабочей зоне печи температура составляет 2200-2800°С. На краях печи температура составляет 900-1000°С. Изобретение позволяет получить многослойные нанотрубки с содержанием металлических примесей менее 1 ppm. 3 з.п. ф-лы, 9 ил., 3 табл.

Изобретение относится к области получения высокочистых многослойных углеродных нанотрубок (МУНТ) с содержанием металлических примесей менее 1 ppm, которые могут использоваться в качестве компонентов композиционных материалов различного назначения.

Для массового производства МУНТ используют методы, базирующиеся на пиролизе углеводородов или монооксида углерода в присутствии металлических катализаторов на основе металлов подгруппы железа [Т.W.Ebbesen // Carbon nanotubes: Preparation and properties, CRC Press, 1997, p.139-161; V.Shanov, Yeo-Heung Yun, M.J.Schuiz // Synthesis and characterization of carbon nanotube materials (review) // Journal of the University of Chemical Technology and Metallurgy, 2006, №4, v.41, p.377-390; J.W.Seo; A.Magrez; M.Milas; K.Lee, V Lukovac, L.Forro // Catalytically grown carbon nanotubes: from synthesis to toxicity // Journal of Physics D (Applied Physics), 2007, v.40, n.6]. В силу этого получаемые с их помощью МУНТ содержат примеси металлов используемых катализаторов. Вместе с тем, для ряда приложений, например, для создания электрохимических устройств и получения композиционных материалов различного назначения, требуются высокочистые МУНТ, не содержащие примесей металлов. Высокочистые МУНТ прежде всего необходимы для получения композиционных материалов, подвергающихся высокотемпературной обработке. Это обусловлено тем, что неорганические включения могут быть катализаторами локальной графитации и в результате инициировать формирование новых дефектов в углеродной структуре [А.С.Фиалков // Углерод, межслоевые соединения и композиты на его основе, Аспект Пресс, Москва, 1997, с.588-602]. Механизм каталитического действия металлических частиц базируется на взаимодействии атомов металлов с углеродной матрицей с образованием металл-углеродных частиц с последующим выделением новых графитоподобных образований, которые могут разрушать структуру композита. Поэтому даже небольшие примеси металлов могут привести к нарушению однородности и морфологии композиционного материала.

Наиболее распространенные способы очистки каталитических углеродных нанотрубок от примесей базируются на их обработке смесью кислот с разной концентрацией при нагревании, а также в сочетании с воздействием микроволнового излучения . Однако основным недостатком данных методов является разрушение стенок углеродных нанотрубок в результате воздействия сильных кислот, а также появление большого количества нежелательных кислородсодержащих функциональных групп на их поверхности, что затрудняет подбор условий для кислотной обработки . При этом чистота получаемых МУНТ составляет 96-98 мас.%, поскольку металлические частицы катализатора инкапсулируются во внутренней полости углеродной нанотрубки и являются недоступными для реагентов.

Повышения чистоты МУНТ удается добиться путем их прогрева при температурах выше 1500°C с сохранением структуры и морфологии углеродных нанотрубок . Эти методы позволяют не только очистить МУНТ от примесей металлов, но и способствуют упорядочению структуры углеродных нанотрубок за счет отжига мелких дефектов, увеличению модуля Юнга, уменьшению расстояния между графитовыми слоями, а также удалению поверхностного кислорода, что в дальнейшем обеспечивает более равномерное диспергирование углеродных нанотрубок в полимерной матрице, необходимое для получения более качественных композитных материалов . Прокалка при температуре около 3000°С приводит к образованию дополнительных дефектов в структуре углеродных нанотрубок и развитию уже существующих дефектов. Следует отметить, что чистота углеродных нанотрубок, получаемых с помощью описанных методов, составляет не более 99.9%.

Изобретение решает задачу разработки метода очистки многослойных углеродных нанотрубок, полученных каталитическим пиролизом углеводородов, с практически полным удалением примеси катализатора (до 1 ppm), а также примесей других соединений, которые могут появляться при кислотной обработке МУНТ, с сохранением морфологии углеродных нанотрубок.

Задача решается способом очистки многослойных углеродных нанотрубок, получаемых пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а также Al 2 O 3 , MgO, СаСО 3 в качестве носителей, который осуществляют кипячением в растворе соляной кислоты с дальнейшей промывкой водой, после кислотной обработки проводят прогрев в токе высокочистого аргона в печи с градиентом температур, в рабочей зоне температура составляет 2200-2800°С, на краях печи температура составляет 900-1000°С, в результате чего получают многослойные нанотрубки с содержанием металлических примесей менее 1 ppm.

Прогрев проводят в ампулах, выполненных из высокочистого графита.

Время прогрева в токе аргона составляет, например, 15-60 мин.

Используют аргон с чистотой 99.999%.

Существенным отличием метода является использование для очистки МУНТ печи с градиентом температур, где в горячей зоне происходит испарение примесей металлов, а в холодной зоне происходит конденсация частиц металлов в виде мелких шариков. Для осуществления переноса паров металлов используют поток высокочистого аргона (с чистотой 99.999%) с расходом газа около 20 л/ч. Печь снабжена специальными уплотнениями, предотвращающими воздействие атмосферных газов.

Предварительная десорбция воды и кислорода воздуха с поверхности МУНТ и графитовой ампулы, в которой образец помещают в графитовую печь, а также продувка их высокочистым аргоном позволяют избежать воздействия на очищаемые МУНТ газотранспортных реакций с участием водород- и кислородсодержащих газов, приводящих к перераспределению углерода между его высокодисперсными формами и хорошо окристаллизованными графитоподобными формами с пониженной поверхностной энергией (V.L.Kuznetsov, Yu.V.Butenko, V.I.Zaikovskii and A.L.Chuvilin // Carbon redistribution processes in nanocarbons // Carbon 42 (2004) pp.1057-1061; А.С.Фиалков // Процессы и аппараты производства порошковых углеграфитовых материалов, Аспект Пресс, Москва, 2008, с.510-514).

Каталитические углеродные многослойные нанотрубки получают пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Мо и их комбинаций, а также Al 2 O 3 , MgO, СаСО 3 в качестве носителей (Т.W.Ebbesen // Carbon nanotubes: Preparation and properties, CRC Press, 1997, p.139-161; V.Shanov, Yeo-Heung Yun, M.J.Schuiz // Synthesis and characterization of carbon nanotube materials (review) // Journal of the University of Chemical Technology and Metallurgy, 2006, №4, v.41, p.377-390; J.W.Seo; A.Magrez; M.Milas; K.Lee, V Lukovac, L.Forro // Catalytically grown carbon nanotubes: from synthesis to toxicity // Journal of Physics D (Applied Physics), 2007, v.40, n.6).

В предлагаемом способе для демонстрации возможности удаления примесей наиболее типичных металлов очистку проводят для двух типов МУНТ, синтезированных на катализаторах Fe-Со/Al 2 O 3 и Fe-Co/СаСО 3 , содержащих Fe и Со в соотношении 2:1. Одной из наиболее важных особенностей использования данных катализаторов является отсутствие в синтезированных образцах других фаз углерода, кроме МУНТ. В присутствии катализатора Fe-Со/Al 2 O 3 получают МУНТ со средними внешними диаметрами 7-10 нм, а в присутствии катализатора Fe-Co/СаСО 3 получают МУНТ с большими средними внешними диаметрами - 22-25 нм.

Полученные образцы исследуют методом просвечивающей электронной микроскопии, рентгеноспектральным флуоресцентным методом на анализаторе ARL - Advant"x с Rh-анодом рентгеновской трубки (точность измерений ±10%), а также измеряют удельную поверхность образцов методом БЭТ.

По данным ПЭМ, исходные образцы состоят из высокодефектных МУНТ (Фиг.1, 6). Фрагменты трубок в районе изгибов имеют плавные, закругленные контуры; на поверхности трубок наблюдается большое количество фуллереноподобных образований. Графеноподобные слои нанотрубок характеризуются наличием большого количества дефектов (разрывов, Y-подобных соединений и др.). На некоторых участках трубок наблюдается несоответствие числа слоев на различных сторонах МУНТ. Последнее свидетельствует о наличии незамкнутых протяженных графеновых слоев, в основном локализованных внутри трубок. Электронно-микроскопические изображения прогретых МУНТ в токе высокочистого аргона при температурах 2200°С - Фиг.2, 7; 2600°С - Фиг.3, 8; 2800°С - Фиг.4, 5, 9. В образцах после прокаливания наблюдаются более ровные МУНТ с меньшим количеством как внутренних, так и приповерхностных дефектов. Трубки состоят из прямолинейных фрагментов порядка сотен нанометров с четко выраженными изломами. С увеличением температуры прокаливания увеличиваются размеры прямолинейных участков. Количество графеновых слоев в стенках трубок с разных сторон становится одинаковым, что делает структуру МУНТ более упорядоченной. Внутренняя поверхность трубок также претерпевает существенные изменения - удаляются частицы металлов, внутренние перегородки становятся более упорядоченными. Более того, концы трубок закрываются - происходит замыкание графеновых слоев, образующих трубки.

Прокаливание образцов при 2800°С приводит к образованию небольшого количества укрупненных углеродных образований цилиндрической формы, состоящих из вложенных друг в друга графеновых слоев, что может быть связано с переносом углерода на небольшие расстояния за счет увеличения давления паров графита.

Исследования образцов исходных и прогретых МУНТ рентгеноспектральным флуоресцентным методом показали, что после прогрева образцов многослойных углеродных нанотрубок при температурах в интервале 2200-2800°С количество примесей уменьшается, что также подтверждается методом просвечивающей электронной микроскопии. Прогрев образцов МУНТ при 2800°С обеспечивает практически полное удаление примесей из образцов. При этом удаляются не только примеси металлов катализаторов, но и примеси других элементов, попадающих в МУНТ на стадиях кислотной обработки и отмывки. В исходных образцах соотношение железа к кобальту приблизительно равно 2:1, что соответствует исходному составу катализаторов. Содержание алюминия в исходных трубках, полученных на образцах катализатора Fe-Со/Al 2 O 3 , небольшое, что связано с его удалением при обработке нанотрубок кислотой при отмывании катализатора. Результаты исследования содержания примесей рентгеноспектральным флуоресцентным методом приведены в таблицах 1 и 2.

Измерение удельной поверхности методом БЭТ показало, что при повышении температуры удельная поверхность образцов МУНТ изменяется незначительно с сохранением структуры и морфологии углеродных нанотрубок. По данным ПЭМ, снижение удельной поверхности можно связать как с закрытием концов МУНТ, так и уменьшением количества поверхностных дефектов. При повышении температуры возможно образование незначительной доли укрупненных образований цилиндрической формы с увеличенным числом слоев и соотношением длины к ширине, приблизительно равном 2-3, что также способствует понижению удельной поверхности. Результаты исследования удельной поверхности приведены в таблице 3.

Сущность изобретения иллюстрируется следующими примерами, таблицами (таблицы 1-3) и иллюстрациями (Фиг.1-9).

Навеску МУНТ (10 г), полученную пиролизом этилена в присутствии катализатора Fe-Со/Al 2 O 3 в проточном кварцевом реакторе при температуре 650-750°С, помещают в графитовую ампулу высотой 200 мм и внешним диаметром 45 мм и закрывают ее крышкой (10 мм в диаметре) с отверстием (1-2 мм в диаметре). Графитовую ампулу помещают в кварцевую ампулу и откачивают воздух с помощью вакуумного насоса до давления не менее 10 -3 Торр с последующей продувкой высокочистым аргоном (чистота 99.999%) сначала при комнатной температуре, а потом при температуре 200-230°С для удаления кислородсодержащих поверхностных групп и следов воды. Образец прогревают при температуре 2200°С в течение 1 ч в потоке высокочистого аргона (~20 л/ч) в печи с градиентом температур, где в рабочей зоне температура сохраняется и составляет 2200°С, а на краях печи температура составляет 900-1000°С. Испаряющиеся в процессе нагрева из МУНТ атомы металла удаляются из горячей части печи в холодную потоком аргона, где происходит осаждение металла в виде мелких шариков.

После прокаливания проводят исследование полученного материала методом просвечивающей электронной микроскопии и рентгеноспектральным флуоресцентным методом. На Фиг.1 приведены электронно-микроскопические изображения исходных МУНТ, на Фиг.2 - прогретых при 2200°С МУНТ. С использованием метода БЭТ определяют удельную площадь поверхности образцов МУНТ до и после прокаливания. Полученные данные свидетельствуют о незначительном уменьшении удельной поверхности образцов после прокаливания при сравнении с удельной поверхностью исходного образца МУНТ.

Аналогично примеру 1, отличающемуся тем, что навеску исходных МУНТ прогревают при 2600°С в течение 1 ч в потоке высокочистого аргона (~20 л/ч) в печи с градиентом температур, где в рабочей зоне температура сохраняется и составляет 2600°С, на краях печи температура составляет 900-1000°С. Изображения прогретых МУНТ, полученных методом просвечивающей электронной микроскопии, приведены на Фиг.3. На снимках ПЭМ высокого разрешения видны закрытые концы нанотрубок.

Аналогично примеру 1, отличающемуся тем, что навеску исходных МУНТ прогревают при 2800°С в течение 15 мин в потоке высокочистого аргона (~20 л/ч) в печи с градиентом температур, где в рабочей зоне температура сохраняется и составляет 2800°С, на краях печи температура составляет 900-1000°С. Изображения прогретых МУНТ, полученных методом просвечивающей электронной микроскопии, приведены на Фиг.4.

Прокаливание при 2800°С приводит к формированию небольшого количества укрупненных образований цилиндрической формы с увеличенным числом слоев и соотношением длины к ширине, приблизительно равном 2-3. Эти укрупнения видны на снимках ПЭМ (Фиг.5).

Аналогично примеру 1, отличающемуся тем, что исходные МУНТ получены в присутствии катализатора Fe-Co/СаСО 3 . Изображения исходных МУНТ и прогретых при 2200°С МУНТ, полученные методом просвечивающей электронной микроскопии, приведены на Фиг.6, 7 соответственно. На снимках ПЭМ исходных МУНТ видны частицы металла, инкапсулированные в каналах трубок (отмечены стрелками).

Аналогично примеру 4, отличающемуся тем, что навеска исходного МУНТ прогрета при 2600°С. Изображения прогретых МУНТ, полученные методом просвечивающей электронной микроскопии, приведены на Фиг.8. На снимках ПЭМ высокого разрешения видны закрытые концы нанотрубок.

Аналогично примеру 4, отличающемуся тем, что навеска исходного МУНТ прогрета при 2800°С в течение 15 мин. Изображения прогретых МУНТ, полученные методом просвечивающей электронной микроскопии, приведены на Фиг.9. На снимках видно образование незначительной доли укрупнений.

Таблица 1
Данные рентгеноспектрального флуоресцентного метода по содержанию примесей в МУНТ после прогревания, полученных с использованием катализатора Fe-Со/Al 2 O 3
Элемент
Исходные МУНТ МУНТ_2200°С пример 1 МУНТ_2600°С пример 2 МУНТ_2800°С пример 3
Fe 0.136 0.008 следы следы
Со 0.0627 следы следы следы
Al 0.0050 следы следы следы
Са следы 0.0028 0.0014 следы
Ni 0.0004 следы следы следы
Si 0.0083 0.0076 следы нет
Ti нет 0.0033 следы следы
S следы нет нет нет
Cl 0.111 нет нет нет
Sn 0.001 0.001 следы следы
Ba нет нет нет нет
Cu 0.001 0.001 следы следы
следы - содержание элемента ниже 1 ppm
Таблица 2
Данные рентгеноспектрального флуоресцентного метода по содержанию примесей в МУНТ после прогревания, полученных с использованием катализатора Fe-Co/СаСО 3
Элемент Оценка содержания примесей, мас.%
Исходные МУНТ МУНТ_2200°С пример 4 МУНТ_2600°С пример 5 МУНТ_2800°С пример 6
Fe 0.212 0.0011 0.0014 0.001
Со 0.0936 следы следы следы
Al 0.0048 следы следы следы
Са 0.0035 0.005 0.0036 следы
Ni 0.0003 следы следы следы
Si 0.0080 0.0169 0.0098 следы
Ti нет следы 0.0021 0.0005
S 0.002 нет нет нет
Cl 0.078 нет нет нет
Sn 0.0005 следы следы следы
Ba 0.008 нет нет нет
Cu следы следы следы следы
Таблица 3
Удельная поверхность БЭТ исходных и прогретых образов МУНТ
Образец МУНТ (катализатор) S уд., м 2 /г (±2.5%)
МУНТ_исх (Fe-Со/Al 2 O 3) 390
МУНТ_2200 (Fe-Со/Al 2 O 3) пример 1 328
МУНТ_2600 (Fе-Со/Al 2 O 3) пример 2 302
МУНТ_2800 (Fe-Со/Al 2 O 3) пример 3 304
МУНТ_исх (Fe-Co/СаСО 3) 140
МУНТ_2200 (Fe-Co/СаСО 3) пример 4 134
МУНТ_2600 (Fe-Co/СаСО 3) пример5 140
МУНТ_2800 (Fe-Co/СаСО 3) пример 6 134

Подписи к фигурам:

Фиг.1. Электронно-микроскопические изображения исходного образца МУНТ, синтезированного на катализаторе Fe-Со/Al 2 O 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на котором видны дефектные стенки МУНТ.

Фиг.2. Электронно-микроскопические изображения прогретого при температуре 2200°С образца МУНТ, синтезированного на катализаторе Fe-Со/Al 2 O 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения. Структура МУНТ становится менее дефектной, концы нанотрубок закрываются.

Фиг.3. Электронно-микроскопические изображения прогретого при температуре 2600°С образца МУНТ, синтезированного на катализаторе Fe-Со/Al 2 O 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на которых видны закрытые концы МУНТ. Стенки МУНТ становятся более ровными и менее дефектными.

Фиг.4. Электронно-микроскопические изображения прогретого при температуре 2800°С образца МУНТ, синтезированного на катализаторе Fe-Со/Al 2 O 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на котором видны менее дефектные стенки МУНТ.

Фиг.5. Электронно-микроскопические изображения прогретого при температуре 2800°С образца МУНТ, синтезированного на катализаторе Fe-Со/Al 2 O 3 , отображающие появление дефектов в структуре МУНТ, представляющие собой цилиндрические образования, состоящие из вложенных друг в друга графеновых слоев, которые отображены на правом верхнем ПЭМ изображении высокого разрешения.

Фиг.6. Электронно-микроскопические изображения исходного образца МУНТ, синтезированного на катализаторе Fe-Co/СаСО 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на котором видна неровная поверхность МУНТ. Справа, вверху видны частицы катализатора, инкапсулированные внутри каналов углеродных нанотрубок (отмечены стрелками).

Фиг.7. Электронно-микроскопические изображения прогретого при температуре 2200°С образца МУНТ, синтезированного на катализаторе Fe-Co/СаСО 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на котором видны более ровные стенки МУНТ.

Фиг.8. Электронно-микроскопические изображения прогретого при температуре 2600°С образца МУНТ, синтезированного на катализаторе Fe-Co/СаСО 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения, на котором видны закрытые концы МУНТ. Стенки МУНТ становятся более ровными и менее дефектными.

Фиг.9. Электронно-микроскопические изображения прогретого при температуре 2800°С образца МУНТ, синтезированного на катализаторе Fe-Co/СаСО 3 . Слева - изображение ПЭМ низкого разрешения. Справа, внизу - изображение ПЭМ высокого разрешения.

1. Способ очистки многослойных углеродных нанотрубок, получаемых пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а также Al 2 O 3 , MgO, СаСО 3 - в качестве носителей, кипячением в растворе соляной кислоты с дальнейшей промывкой водой, отличающийся тем, что после кислотной обработки проводят прогрев в токе высокочистого аргона в печи с градиентом температур, где в рабочей зоне температура составляет 2200-2800°С, на краях печи температура составляет 900-1000°С, в результате чего получают многослойные нанотрубки с содержанием металлических примесей менее 1 ppm.

2. Способ по п.1, отличающийся тем, что прогрев проводят в ампулах, выполненных из высокочистого графита.

Изобретение относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки воды с получением безопасной для здоровья питьевой воды. Способ очистки поверхностных и подземных вод от титана и его соединений включает приведение загрязненных вод в контакт с адсорбентом, где в качестве адсорбента используют углеродные нанотрубки, которые помещают в ультразвуковую ванну и воздействуют на углеродные нанотрубки и очищаемую воду в режиме 1-15 мин, с частотой ультразвука 42 кГц и мощностью 50 Вт. Технический результат заключается в 100%-ной очистке воды от титана и его соединений за счет очень высоких адсорбционных показателей углеродных нанотрубок. 4 ил., 2 табл., 4 пр.

Рисунки к патенту РФ 2575029



Изобретение относится к области сорбционной очистки поверхностных и подземных вод с высоким содержанием титана и его соединений и может быть использовано для очистки вод от титана и его соединений для получения безопасной для здоровья питьевой воды.

Известен способ очистки воды от ионов тяжелых металлов, согласно которому для очистки используют в качестве адсорбента прокаленный активированный природный адсорбент, представляющий собой кремнистую породу смешанного минерального состава месторождений Татарстана, содержащую мас.%: опалкристоболит 51-70, цеолит 9-25, глинистую составляющую - монт мориллонит, гидрослюда 7-15, кальцит 10-25, и т.д. [Патент РФ 2150997, МПК B01G 20/16, B01G 20/26, опубл. 20.06.2000]. Недостатком известного способа является использование для активации материала хлористоводородной кислоты, что требует оборудования, обладающего устойчивостью к агрессивным средам. Кроме того, в способе используется довольно редко встречающаяся порода сложного минерального состава и нет данных о содержании титана и его соединений.

Известен способ получения гранулированного адсорбента на основе шунгита [Авт.св. СССР № 822881, МПК B01G 20/16, опубл. 23.04.1981].

Недостатком данного способа является использование малораспространенного минерала шунгита, который предварительно модифицирован нитратом аммония, прокаливанием при высокой температуре, что требует соответствующей аппаратуры и расхода энергии, а также обработки в агрессивных средах. Об эффективности очистки воды от титана нет данных.

Известен способ, взятый за аналог, получения органоминеральных сорбентов на основе природных алюмосиликатов, а именно цеолита, путем модифицирования предварительно термообработанного алюмосиликата полисахаридами, в частности хитозаном [Патент РФ № 2184607, МПК C02F 1/56, B01J 20/32, B01J 20/26, B01J 20/12, опубл. 10.07.2002]. Способ позволяет получать сорбенты, пригодные для эффективной очистки водных растворов от ионов металла и органических красителей различной природы.

Недостатками сорбентов, полученных описанным способом, являются их высокая степень дисперсности, что не позволяет осуществлять очистку воды током через слой сорбента (фильтр быстро забивается), а также возможность смыва со временем слоя хитозана с сорбента из-за отсутствия закрепления его на минеральной основе и нет данных об эффективной очистки от соединений тяжелых металлов, как например титан и его соединений.

Описан способ осветления и утилизации промышленных вод фильтровальных сооружений станций водоподготовки [Патент на изобретение RU № 2372297, МПК C02F 1/5, C02F 103/04, опубл. 10.11.2009].

Сущность изобретения заключается в использовании комплексного коагулянта, представляющего собой смесь водных растворов сульфата и оксихлорида алюминия в соотношении доз 2:1 по окиси алюминия.

В данном патенте приведены примеры очистки подземной воды для питьевого водоснабжения.

Недостатком описанного способа является слабая эффективность очистки от примесей, 46% осадка всплыла, а остальная часть находилась во взвешенном состоянии.

Известен способ очистки воды обработкой в подающем трубопроводе с катионным флокулянтом [Патент РФ № 2125540, МПК C02F 1/00, опубл. 27.01.1999].

Изобретение относится с способам очистки воды поверхностных водосточников и может быть использовано в области хозяйственно-питьевого или технического водоснабжения.

Сущность изобретения: дополнительно к флокулянту в трубопровод вводят минеральный коагулянт в массовом соотношении к флокулянту от 40:1 до 1:1.

Способ обеспечивает повышение эффективности агрегатирования взвешенных веществ, что позволяет снизить мутность отстоянной воды в 2-3 раза. После использования этого способа необходимо дальнейшее полное осаждение в отстойниках. Таким образом, согласно описанному способу не достигнута 100% очистка от металлов, жесткость воды снизилась с 5,7 мг-экв/л до 3 мг-экв/л, мутность снизилась до 8,0 мг/л.

Недостатком аналога является слабая эффективность очистки от металлов и органических примесей, о содержании титана нет данных.

Описана сорбционная эффективность углеродных нанотрубок (УНТ), как основа инновационной технологии очистки водно-этанольных смесей [Запороцкова Н.П. и др. Вестник ВолГУ, серия 10, вып. 5, 2011, 106 с.].

В работе выполнены квантово-механические исследования процессов адсорбции молекул тяжелых спиртов на внешней поверхности однослойных углеродных нанотрубок.

Недостатком описанной сорбционной активности УНТ является только теоретические квантово-механические расчеты, а экспериментальные исследования проведены для спиртов. Примеры для очистки от металлов отсутствуют.

Доказано положительное влияние углеродных нанотрубок на процесс очистки водно-этанольных смесей.

В настоящее время особые надежды в развитии многих областей науки и техники связывают с углеродными нанотрубками УНТ [Харрис П. Углеродные нанотрубки и родственные структуры. Новые материалы XXI века. - М.: Техносфера, 2003. - 336 с.].

Замечательная особенность УНТ связана с их уникальными сорбционными характеристиками [Елецкий А.В. Сорбционные свойства углеродных наноструктур. - Успехи физических наук. - 2004. -Т. 174, № 11. - С. 1191-1231].

Описан фильтр на основе углеродных нанотрубок для очистки спиртосодержащих жидкостей [Поликарпова Н.П. и др. Вестник ВолГУ, серия 10, вып. 6, 2012, 75 с.]. Проведены эксперименты по очистке спиртосодержащих жидкостей методами фильтрации и пропускания, установлена массовая доля УНТ, приводящая к наилучшему результату.

Выполненные экспериментальные исследования доказали, что обработка водно-этанольной смеси УНТ способствует уменьшению содержания сивушных масел и других веществ. Недостатком данного аналога является отсутствие данных по очистке воды от металлов.

В работе изучалась сорбция/десорбция Zn(II) в последовательных циклах активированным углем и УНТ. Адсорбция Zn(II) активированным углем резко снижалась после нескольких циклов, что объясняется низким удалением ионов металлов с внутренней поверхности пор активированного угля.

Гидрофобная природа УНТ обуславливает их слабое взаимодействие с молекулами воды, создавая условия для ее свободного протекания.

Noy A., Park Н.G., Fornasiero F., Holt J.K., Grigoropoulos С.P. and Bakajin О. Nanofluidics in carbon nanotubes // Nano Today. 2007, vol. 2, no. 6, pp. 22-29.

Адсорбционная емкость УНТ зависит от наличия функциональных групп на поверхности адсорбента и свойств адсорбата.

Так, например, наличие карбоксильных, лактонных и фенольных групп повышает адсорбционную емкость по полярным веществам .

УНТ, на поверхности которых отсутствуют функциональные группы, характеризуются высокой адсорбционной емкостью по неполярным загрязняющим веществам.

Один из способов создания мембраны - это выращивание УНТ на кремневой поверхности при помощи углеродсодержащих паров с использованием никеля в качестве катализатора.

УНТ - молекулярные структуры, напоминающие соломинки, из листов углерода толщиной в долю нанометра 10 -9 м, по сути это скрученный в трубку атомарный слой обычного графита - одного из наиболее перспективных материалов в области нанотехнологий. УНТ могут иметь и развернутую структуру [Сайт WCG http://www.worldcommunitygrid.org/].

Мембранная технология, которая широко используется для получения питьевой воды для жителей нашей планеты.

Имеется два существенных недостатка - энергопотребление и обрастание мембран, что удаляется только химическими способами.

Производительные и необрастающие мембраны могут быть созданы на основе углеродных нанотрубок или графена [М. Majumder et al. Nature 438, 44 (2005)].

Наиболее близким к заявленному изобретению по технической сущности и достигаемому результату является способ получения сорбентов для очистки воды [Патент РФ 2277013 С1, МПК B01J 20/16, B01J 20/26, B01J 20/32, опубл. 01.12.2004]. Этот патент взят за прототип. Этот способ относится к области сорбционной очистки воды, конкретно к получению сорбентов и способам очистки, и может быть использовано для очистки питьевой или промышленной воды с высоким содержанием ионов тяжелых металлов и полярных органических веществ. Способ включает обработку природного алюмосиликата раствором хитозана в разбавленной уксусной кислоте в соотношении алюмосиликата к раствору хитозана, равном 1:1, при рН 8-9.

В табл. 1 приведена сравнительная характеристика сорбентов, полученных согласно изобретению, взятому за прототип [Патент 2277013]. Приведены примеры по сорбции в отношении красителей и по сорбции ионов меди, железа и других металлов из растворов.

Недостатком прототипа является невысокая адсорбционная способность по отношению к тяжелым металлам (СОЕ) мг/л для меди Cu +2 (от 3,4 до 5,85), отсутствуют данные по адсорбции титана и его соединений. СОЕ, мг/л для Fe +3 меняется от 3,4 до 6,9.

Задачей изобретения является разработка способа очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и воздействием ультразвука, что позволит получить качественную питьевую чистейшую воду, повысит эффективность очистки поверхностных и подземных вод за счет высоких адсорбционных показателей УНТ.

Поставленная задача решается предлагаемым способом очистки поверхностных и подземных вод от титана и его соединений с помощью УНТ, воздействуя ультразвуком мощностью 50 Вт с частотой ультразвука в 42 кГц в течение 1-15 мин.

Способ осуществляется следующим образом. Адсорбент представляет собой однослойные углеродные нанотрубки, обладающие способностью вступать в активное взаимодействие с атомами титана и его катионами (Ti, Ti +2 , Ti +4).

Один грамм УНТ 98% чистоты вносят в 99 г воды для очистки от Ti, Ti +2 , Ti +4 , а затем все содержимое помещают в ультразвуковую ванну УХ-3560 и воздействуют ультразвуком в течение 1-15 мин мощностью 50 Ватт и с частотой ультразвука 42 кГц.

После фильтрования исследуют образцы воды, взятые для анализа. Атомно-эмиссионный анализ применяется для определения содержания титана и его соединений в пробах воды до обработки УНТ и после обработки проб воды УНТ в ультразвуковой ванне.

Предлагаемый «Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука» подтверждается примерами, которые будут описаны далее.

Осуществление способа в соответствии с указанными условиями позволяет получать абсолютно чистую воду с нулевым содержанием титана и его соединений (Ti, Ti +2 , Ti +4).

Технический результат достигается тем, что УНТ работает как капилляр, всасывая в себя атомы Ti и катионы титана Ti +2 и Ti +4 , размеры которых сравнимы с внутренним диаметром УНТ. Диаметр УНТ варьирует от 4,8 Å от 19,6 Å в зависимости от условий получения УНТ.

Экспериментально доказано, что полости УНТ активно заполняются различными химическими элементами.

Важной особенностью, отличающей УНТ от других известных материалов, является наличие в нанотрубке внутренней полости. Атом Ti и его катионы Ti +2 , Ti +4 проникают внутрь УНТ под действием внешнего давления либо в результате капиллярного эффекта и удерживается там благодаря сорбционным силам [Дьячков П.Н. Углеродные нанотрубки: структура, свойства, применение. - М.: Бином. Лаборатория знаний, 2006. - 293 с.].

Это обеспечивает возможность селективной адсорбции нанотрубками. Кроме того, сильно искривленная поверхность УНТ позволяет адсорбировать на ее поверхности достаточно сложные атомы и молекулы, в частности Ti, Ti +2 , Ti +4 .

При этом эффективность нанотрубок в десятки раз превосходит активность графитовых адсорбентов, являющихся на сегодняшний день самыми распространенными средствами очистки. УНТ могут адсорбировать примеси как на внешней поверхности, так и на внутренней, что позволяет проводить селективную адсорбцию.

Поэтому УНТ можно использовать для финишной очистки различных жидкостей от примесей сверхмалых концентраций.

У УНТ привлекательна высокая удельная поверхность материала УНТ, достигающая значений 600 м 2 /г и более.

Столь высокая удельная поверхность, в несколько раз превышает удельную поверхность лучших современных сорбентов, открывает возможность их использования для очистки поверхностных и подземных вод от тяжелых металлов, в частности Ti, Ti +2 , Ti +4 .

Синтез УНТ. С использованием установки синтеза углеродных нанотрубок CVDomna получен углеродный наноматериал УНТ, который применялся для очистки поверхностных и подземных вод от титана и его соединений.

Проведены экспериментальные исследования по очистке воды от титана и его соединений.

Для определения оптимального количества УНТ необходимо довести содержание титана и его соединений до сверхмалых количеств. Такая концентрация УНТ была найдена и в последующих опытах использовалась оптимальная концентрация в количестве 0,01 г на 1 л анализируемой воды.

Атомно-эмиссионный анализ показал наличие атомарного Ti и его катионов (Ti +2 , Ti +4) в исследуемых пробах воды, из чего можно сделать вывод, что именно титан и катионы Ti +2 , Ti +4 взаимодействуют с углеродными нанотрубками. Радиус атома Ti составляет 147 пм, т.е. катионы титана могут как интеркалировать в полость углеродной нанотрубки и адсорбироваться внутри (фиг. 1), так и адсорбироваться на ее внешней поверхности, образовывая также мостиковую структуру с атомами углерода гексагонов (фиг. 2), образовывая связанные молекулярные структуры.

Внедрение Ti и его катионов в полость УНТ возможно путем пошагового приближения Ti к нанотрубке вдоль ее главной продольной оси и проникновением атомов титана и его катионов в полость нанотрубки с их дальнейшей адсорбцией на внутренней поверхности УНТ. Известен также другой вариант адсорбции Ti , согласно которому один атом титана может создавать устойчивые Ti-C связи с атомами углерода с внешней стороны углеродной нанотрубки в двух простых случаях, когда Ti находится в 1/4 и 1/2 всех гексагонов (фиг. 3).

То есть адсорбция титана и его катионов на поверхности УНТ является не только теоретически доказанным фактом, но и экспериментально доказано в исследованиях.

Заявляемый сорбент представляет собой конгломерат однослойных углеродных нанотрубок, обладающих способностью вступать в активное взаимодействие с титаном и его катионами, образуя устойчивые связи, и возможностью адсорбции атомов титана и его соединений на внутренней и внешней поверхностях УНТ с образованием мостиковых структур с двумя связями Ti-C, если Ti +2 или четырьмя для Ti +4 . При очистке воды, загрязненной титаном и его соединениями, используют УНТ, происходит адсорбция титана на поверхностях УНТ за счет Ван-дер-Ваальсовых сил, то есть титан и его соединения из свободных атома и катионов Ti +2 и Ti +4 становится связанным в молекулярное соединение (фиг. 4).

Возможность осуществления изобретения иллюстрируется следующими примерами.

Пример 1. Подземная вода из скважины 1) глубиной 40 м взята для исследования на содержание качественного элементного состава, а также количественного анализа на содержание титана и его соединений до очистки с помощью УНТ и после адсорбции УНТ, и обработки ультразвуком. Время воздействия ультразвука 15 мин. Содержание Ti и его соединений после очистки 0% (табл. 2).

Пример 2. Подземная вода из скважины 2) глубиной 41 м, в отличие от скважины 1) эта вода находилась на расстоянии 200 м от скважины 1) Береславского водохранилища (г. Волгоград). Время воздействия ультразвука 15 мин. Содержание Ti и его соединений после очистки 0% согласно предлагаемому изобретению (табл. 2).

Пример 3. Вода взята из водопроводного крана (Советский р-он, г. Волгограда) подверглась очистке с помощью УНТ и воздействием ультразвука в течение 15 мин, мощностью 50 Вт и рабочей частотой ультразвука 42 кГц (табл. 2).

Пример 4. Все то же что и в примере 1, но время воздействия ультразвука 1 мин.

Пример 5. Подземная вода из скважины 1) глубиной 40 м взята для анализа на содержание титана и его соединений, а затем подвергнута очистке согласно прототипа [Патент RU 2277013 ].

Время воздействия ультразвуком 15 мин (опыт 1, 2, 3, 5). Время воздействия ультразвуком 1 мин (опыт 4).

К преимуществам заявленного способа на основе УНТ можно отнести очень высокую степень адсорбции титана и его соединений. Согласно результатам эксперимента обеспечивается 100%-ная очистка исследуемых вод от титана и его соединений в оптимальных условиях.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок (УНТ) и ультразвука, включающий приведение загрязненных вод в контакт с адсорбентами для улавливания тяжелых металлов, отличающийся тем, что в качестве адсорбента используются углеродные нанотрубки, которые помещают в ультразвуковую ванну, воздействуя на УНТ и очищаемую воду в режиме 1-15 мин, с частотой ультразвука 42 кГц и мощностью 50 Вт.