Производство паровых котлов высокого давления. Паровой котёл — принцип работы и конструктивные особенности

Устройством для производства водяного пара высокой температуры является паровой котел. При этом давление воды, находящейся внутри котла в газообразном состоянии, значительно превышает атмосферное. Нагревание воды происходит в результате выделения тепловой энергии за счет сжигания какого-либо топлива. Несмотря на то, что в настоящее время паровые котлы имеют различную конструкцию и могут применяться, как в промышленных, так и в бытовых целях, они имеют один и тот же принцип работы.

Принцип работы парового котла

Все паровые котлы работают по одинаковому принципу своего устройства:

  • верхняя часть котла содержит резервуар барабанного типа, в который принудительно подается вода за счет применения электронасоса;
  • из данного резервуара вода по специальным отводным трубам стекает в коллектор, расположенный в нижней части устройства;
  • от коллектора к верхнему резервуару идут еще одни трубы, которые проходят в зоне горения топлива (топке котла).

Таким образом, данное устройство для получения пара можно сравнить с системой сообщающихся сосудов, в которой нагретая смесь воды и пара имеет меньшую плотность, чем холодная вода. В результате этой разницы вода постоянно выталкивает пароводяную смесь в верхнюю часть устройства, где с помощью сепаратора пар отделяется от воды.

После этого вода снова попадает в резервуар, а пар – в паропровод, который также находится в зоне сгорания топлива. В результате вода, находящаяся в газообразном состоянии, разогревается еще больше, что приводит к значительному увеличению давления пара. Теперь характеристики пара достигли нужных параметров. Далее он может использоваться либо для отопления помещений, либо для вращения турбин различных агрегатов, в том числе и для получения электрической энергии.

Типы паровых котлов

Все паровые котлы можно классифицировать по нескольким параметрам. Например, по виду топлива, используемого для их работы, различают котлы:

  • жидкотопливные;
  • газовые;
  • угольные;
  • электрические;
  • газомазутные.

А в зависимости от того, какое эти устройства имеют предназначение, их подразделяют на:

  • энергетические (такие котлы вырабатывают пар для обеспечения работы турбин энергетических установок, вырабатывающих электрическую энергию);
  • промышленные (обеспечивают функциональность различных систем на промышленных предприятиях);
  • утилизационные (работающие на вторичных ресурсах, например, сжигающие мусор на специальных заводах);
  • бытовые (предназначены для работы в системе индивидуального отопления).

По своим конструктивным особенностям наиболее распространены такие типы паровых котлов:

  1. Газотрубные.
  2. Водотрубные.
  3. Прямоточные.
  4. Чугунные секционированные.
  5. Блочно-транспортируемые.

Рассмотрим их более подробно.

Газотрубные котлы

Хотя котлы такого типа еще эксплуатируются на различных предприятиях, они уже давно считаются морально устаревшими, поскольку рассчитаны для условий эксплуатации, ограничивающихся рабочим давлением в 1 МПа и мощностью не более 360 кВт. А этого уже недостаточно для обеспечения нормальной работы современных предприятий.

Если же попытаться увеличить мощность такого котла, то необходимо на этапе его проектирования заложить такую толщину стенки, которая будет неимоверно большой, что экономически невыгодно.

Если же этого не сделать, то при повышении мощности газотрубного котла он может взорваться, а огромное количество раскаленного пара, высвободившееся в результате нарушения герметичности стенок, приведет к катастрофическим последствиям для людей.

Водотрубные котлы

Данная конструкция паровых котлов является более современной, а значит, более мощной и безопасной. Однако такие паровые котлы имеют более сложную конструкцию, чем их газотрубные аналоги. Но этот недостаток перекрывается целым рядом достоинств такой конструкции:

  • котлы такого типа имеют небольшое время разогревания до рабочей температуры;
  • они абсолютно взрывобезопасны даже в ситуации с перегрузкой котла;
  • такие устройства легко могут быть перенастроены для работы с различной нагрузкой;
  • их легко можно транспортировать к месту установки.

Поскольку сложное устройство водотрубных котлов предусматривает специальную систему топочных перегородок и пучков труб, то тепловая энергия, выделяющаяся при сжигании топлива, многократно обтекает одни и те же трубы с водой, что увеличивает теплоотдачу, а значит, КПД котла.

Водотрубные котлы, в свою очередь, подразделяются на:

  • Горизонтальные (при этом резервуар барабанного типа имеет либо продольное расположение, либо поперечное).
  • Вертикальные (при этом устройство котла может содержать не только 1, но и несколько паровых барабанов).
  • Радиационные, имеющие в своем составе, как горизонтально, так и вертикально расположенные паровые барабаны, либо их комбинацию. Иногда для более эффективной работы таких паровых котлов может быть применена и принудительная циркуляция.

Кроме того, для повышения эффективности работы водотрубного котла очень часто применяются специальные топочные экраны, позволяющие значительно увеличить выделение тепловой энергии в зоне горения топлива (таким образом, сильно возрастает КПД парового котла) при одновременном снижении требований к теплоизоляционным характеристикам стенок.

Устройство топочного экрана представляет собой ряд близкорасположенных друг к другу труб, по которым течет вода. После нагревания пар из этих труба подается в общую паровую систему котла.

Прямоточные котлы

Паровой котел данного типа способен работать как в режиме, не превышающем максимально допустимую нагрузку, так и режиме, когда давление пара в котле значительно превышает его максимально допустимое значение. В котлах такого типа применяется принудительная прокачка воды по трубам, которая в результате одного прохода через топку превращается в пар с избыточным давлением, необходимым для работы турбин энергетических установок, вырабатывающих электрическую энергию. Таким образом, прямоточные котлы, работающие на жидком, твердом или газообразном топливе, добываемом из недр Земли, главным образом, эксплуатируются на очень крупных электростанциях.

Основными достоинствами котлов такого типа являются:

  • очень широкий диапазон рабочих условий (от недогрузки до перегрузки);
  • безопасность эксплуатации;
  • небольшое время от запуска котла до достижения им рабочих условий;
  • простота перенастраивания котла из одного режима работы в другой.

Чугунные секционированные котлы

Данные котлы получили в настоящее время очень широкое применение для работы в системах отопления. Свое название устройство получило от схожести с радиатором отопления, поскольку собирается так же из отдельных секций, изготовленных из чугуна. Таким образом, данная конструкция позволяет не только быстро собрать котел по месту его установки, но и при необходимости выполнить за короткое время его демонтаж.

Блочная система секционного котла позволяет увеличивать его мощность до необходимого значение путем присоединения новых чугунных секций. Недостатком такой конструкции является то, что при необходимости замены одной из внутренних секций, вышедшей из строя, например, из-за образования в ней трещины, придется полностью разбирать всю конструкцию котла.

Достоинства таких котлов:

  • небольшое время разогрева котла от пуска до рабочей температуры пара;
  • высокий КПД;
  • возможность наращивания мощности котла.

Однако у секционированных котлов ест и недостатки:

  • Сложность ремонта.
  • Секции не гарантируют безопасную эксплуатацию устройства при высоких значениях давления (максимальные значения рабочих условий: давление – не более 100 кПа, мощность – не более 200 квт, производительность – не более 4,3 тонны пара в час). При таких условиях необходимо будет сжигать в топке порядка 300 кг высококачественного угля за 1 час.

Блочно-транспортируемые котлы

Впервые такие паровые котлы были применены в период Второй мировой войны, когда войска остро нуждались в устройствах, имеющих не только небольшие габариты, но и не требующих сложного технического обслуживания.

В настоящее время котлы такого типа выглядят, как мобильные блоки небольших размеров, которые в своем составе имеют не только рабочий агрегат, но контрольно-измерительную аппаратуру, необходимую для запуска и поддержания рабочих условий в котле.

Данные устройства могут быть очень быстро запущены в работу, как только будут выполнены все необходимые коммуникационные подключения (вода, электроэнергия или подвод топлива, дымоход). Мощность современных модулей достигает несколько тысяч киловатт, а максимальное рабочее давление пара – 9 МПа.

Несмотря на то, что конструкции котлов отличаются друг от друга системами нагрева воды, все они (кроме электрических) используют специальную камеру сгорания топлива – топку.

Топка парового котла

Паровой котел не может функционировать без тепловой энергии, которая выделяется при сжигании топлива в топке.

Конструктивно этот агрегатный узел состоит из:

  • Клетки, образованной вертикальными трубами, концы которых присоединены к барабанам коллекторного типа, имеющим небольшой диаметр. Эти барабаны являются частью всей циркуляционной системы парового котла.
  • Теплоизолирующей огнеупорной обшивки, закрепленной на наружной стороне клетки.
  • Кирпичей специальной формовки, закрывающих задние поверхности труб клетки. Такая конструкция топки не задерживает на себе золу и шлак.

Однако в последнее время все больше потребителей, использующих паровые котлы в индивидуальных системах отопления, отдают предпочтение электрическим котлам.

Электрические котлы

Паровой котел такого типа характеризуется:

  • простотой эксплуатации;
  • экономичностью;
  • экологичностью;
  • бесшумной работой.

Кроме того, такое устройство котлов гораздо проще, чем аналогичное у устройств, использующих твердое или жидкое топливо. Электрические котлы не нужно постоянно очищать о золы или шлака, да и само топливо не требует специальной дополнительной заготовки. Таким образом, вы сэкономите деньги, которые были бы затрачены на доставку топлива к вам домой и которые были бы затрачены на оборудование хранилища для топлива.

По своей конструкции электрические котлы подразделяются на:

  1. Приборы прямого действия. В них вода используется в качестве проводника электрического тока, которая нагревается согласно закону Джоуля-Ленца.
  2. Приборы косвенного действия. В них в качестве нагревательных элементов используются, например, ТЭНы.

Однако, если говорить о цене паровых котлов любого типа, то она достаточно высокая. Именно этот факт вызывает желание некоторых потребителей (особенно в сельской местности), создать такой прибор собственными руками. Давайте рассмотрим, возможно ли это осуществить в принципе?

Изготовление парового котла своими руками

Паровой котел – устройство повышенной опасности в доме. Ведь в нем присутствует избыточное давление пара, которое может привести к взрыву котла, а также высокая температура и открытый огонь, которые могут привести к возникновению пожара.

Именно поэтому для кустарного изготовления котла в домашних условиях понадобятся:

  • точные расчеты;
  • высокотехнологичные жаропрочные материалы;
  • различные инструменты и оборудование.

Не стоит забывать и о различных системах контроля, которыми должен оснащаться котел в целях обеспечения его безопасной эксплуатации.

Предположим, чисто теоретически, что все, что нужно для самостоятельного изготовления парового котла у вас есть. Тогда порядок работ будет следующий:

  1. Определитесь с габаритами будущего котла и его функциональной нагрузкой.
  2. Найдите готовые чертежи такого устройства, которое полностью соответствует вашим исходным данным.
  3. Тщательно изучите всю документацию и разберитесь в нюансах создания котла.
  4. Приобретите необходимые расходные материалы: стальной лист толщиной 1 мм; трубы из нержавеющей стали, диаметр которых лежит в пределах от 100 мм до 120 мм; трубки из нержавеющей стали диаметром от 10 мм до 30 мм.
  5. Из стальной трубы диаметром 100 мм необходимо нарезать двенадцать штук кусков трубы, которые будут использованы, как дымогарные. Из 120 мм трубы необходимо изготовить жаровую трубу. Длина всех трубок напрямую зависит от габаритов котла. Стальной лист вам пригодится для изготовления стенок и переборок.
  6. Дымогарные и жаровые трубы вставляются в специальные отверстия соответствующего диаметра, которые выполняются на стенках котла.
  7. После этого концы дымогарных трубок необходимо развальцевать и приварить к основанию котла, воспользовавшись аргоновой сваркой.
  8. Сваркой же фиксируете на корпусе котла коллектор для забора пара и предохранительный клапан для автоматического сброса избыточного давления в котле. Ваш котел может работать с максимальным давлением от 4 до 6 кг/см2!
  9. Утеплите готовый котел для увеличения его КПД с помощью асбеста листового типа.
  10. Готовую установку по производству пара закрепите с помощью разнообразных хомутов.
  11. Основанием парового котла может быть небольшой кусок стальной трубы диаметром 120 мм. Однако толщина стенок такой трубы должна быть не менее 2,5 мм.

Исходя из этого, я не думаю, что у вас что-нибудь получится. Поэтому не тратьте зря свое время и средства, а просто посетите специализированный магазин и приобретите готовый отопительный прибор, который вас устроит по цене, виду используемого топлива и функциональному назначению.

В заключительной части хотелось бы уделить немного внимания особенностям эксплуатации котлов.

Особенности эксплуатации

Эксплуатация паровых котлов требует тщательной водоподготовки, регулярной очистки топки и управления работой устройства.

  1. Подготовка воды, используемой в работе котлов. В каждой воде в большей или меньшей степени присутствуют минеральные соли, которые в результате нагревания образуют накипь на поверхностях котла. В результате не только ухудшается теплоотдача сгорающего топлива воде (резко снижается КПД котла), но и может произойти разгерметизация труб в результате их прогорания. Поэтому перед подачей воды в котел ее очищают от солей, добавляя специальные реагенты, например, натриевый цеолит. Необходимо удалять и кислород, растворенный в воде, поскольку он способствует коррозии труб.
  2. Удаление золы на наружных стенках топки должно выполняться периодически (по мере накопления).
  3. В настоящее время управление работой паровых котлов занимаются автоматические системы, построенные на полупроводниковых электронных схемах. В домашних условиях управление работой котла (его пуск, выключение и регулировка расхода топлива) осуществляются вручную.

Таким образом, паровые котлы способны обеспечивать теплом, горячей водой и электричеством (речь идет о ТЭЦ) целые кварталы жилых домов, а могут работать и в индивидуальных хозяйствах. В последнем случае вы сможете самостоятельно, поскольку не зависите от системы централизованного отопления и подачи горячей воды, устанавливать время работы котла и температурный режим.

Это позволит вам существенно снизить затраты на обогрев и горячую воду. При этом данные устройства просты в эксплуатации и требуют минимального вмешательства со стороны человека. А еще котлы являются очень безопасными устройствами, поскольку оснащаются специальными системами, предотвращающими аварийные ситуации!

Паровой котёл — устройство, которое используется в быту и промышленности. Оно предназначено для превращения воды в пар. Полученный пар в дальнейшем применяют для обогрева жилья или вращения турбомашин. Какие бывают паровые машины и где они наиболее востребованы?

Паровой котёл — агрегат для производства пара. При этом устройство может давать 2 вида пара: насыщенный и перегретый. Насыщенный пар имеет температуру 100ºC и давление 100 кПа. Перегретый пар отличается повышенной температурой (до 500ºC) и высоким давлением (больше 26 МПа).

Примечание: Насыщенный пар используют в отоплении частных домов, перегретый — в промышленности и энергетике. Он лучше переносит тепло, поэтому использование перегретого пара повышает КПД работы установки.

Где используются паровые котлы:

  1. В отопительной системе — пар является энергоносителем.
  2. В энергетике — используются промышленные паровые машины (парогенераторы) для получения электроэнергии.
  3. В промышленности — перегретый пар может быть использован для преобразования в механическое движение и перемещения транспортных средств.

Паровые котлы: сфера применения

Бытовые паровые устройства используются в качестве источника тепла для отопления дома. Они подогревают ёмкость с водой и гонят образовавшийся пар в трубы отопления. Часто такую систему обустраивают вместе с угольной стационарной печью или котлом. Как правило, бытовые приборы для отопления паром создают только насыщенный, неперегретый пар.

Для промышленного применения пар перегревают. Его продолжают греть после испарения, чтобы ещё больше поднять температуру. Такие установки требуют качественного исполнения, чтобы предупредить взрыв паровой ёмкости.

Перегретый пар из котла может расходоваться на образование электричества или механическое движение. Как это происходит? После испарения пар попадает в паровую турбину. Здесь поток пара вращает вал. Это вращение в дальнейшем перерабатывается в электричество. Так получают электрическую энергию в турбинах электростанций — при вращении вала турбомашин образуется электрический ток.

Кроме образования электрического тока, вращение вала может передаваться непосредственно на двигатель и на колёса. В результате чего паровой транспорт приходит в движение. Известный пример паровой машины — паровоз. В нём при сжигании угля нагревалась вода, образовывался насыщенный пар, который вращал вал двигателя и колёса.

Принцип работы парового котла

Источником тепла для нагрева воды в паровом котле может быть любой вид энергии: солнечная, геотермальная, электрическая, тепло от сгорания твёрдого топлива или газа. Образующийся пар является теплоносителем, он переносит тепло сгорания топлива к месту его применения.

В различных конструкциях паровых котлов используется общая схема подогрева воды и её превращения в пар:

  • Вода очищается и подаётся в резервуар с помощью электронасоса. Как правило, резервуар расположен в верхней части котла.
  • Из резервуара по трубам вода стекает вниз в коллектор.
  • Из коллектора вода поднимается снова вверх через зону нагрева (горения топлива).
  • Внутри водной трубы образуется пар, который под действием разницы давлений между жидкостью и газом поднимается вверх.
  • Вверху пар проходит через сепаратор. Здесь он отделяется от воды, остатки которой возвращаются в резервуар. Дальше пар поступает в паропровод.
  • Если это не простой паровой котёл, а парогенератор, то его трубы вторично проходят через зону горения и нагрева.

Устройство парового котла

Паровой котёл представляет собой ёмкость, внутри которой нагретая вода испаряется и образует пар. Как правило — это труба различного размера.

Кроме трубы с водой, в котлах имеется топочная камера (в ней сгорает топливо). Конструкция топки определяется видом топлива, для которого сконструирован котёл. Если это твёрдый уголь, дрова, то внизу топочной камеры есть колосниковая решётка. На ней располагают уголь и дрова. Снизу через колосники в топочную камеру проходит воздух. Для эффективной тяги (движения воздуха и горения топлива) вверху топки устраивают .


Если энергоноситель — жидкий или газообразный (мазут, газ), то в топочную камеру вводят горелку. Для движения воздуха также делают вход и выход (колосниковую решётку и дымоход).

Горячий газ от сгорания топлива поднимается к ёмкости с водой. Он нагревает воду и выходит через дымоход. Нагретая до температуры кипения вода начинает испаряться. Пар поднимается вверх и поступает в трубы. Так происходит естественная циркуляция пара в системе.

Классификация паровых котлов

Паровые котлы классифицируют по нескольким признакам. По виду топлива, на котором они работают:

  • газовые;
  • угольные;
  • мазутные;
  • электрические.

По предназначению:

  • бытовые;
  • промышленные;
  • энергетические;
  • утилизационные.

По конструктивным особенностям:

  • газотрубные;
  • водотрубные.

Давайте рассмотрим, чем отличается конструкция газотрубных и водотрубных машин.

Газо- и водотрубные котлы: отличия

Емкость для образования пара часто представляет собой трубу или несколько труб. Воду в трубах обогревают горячие газы, образующиеся при сгорании топлива. Устройства, в которых газы поднимаются к трубам с водой, называют газотрубными котлами. Схема газотрубного агрегата приведена на рисунке.


Схема газотрубного котла: 1- подвод топлива и воды, 2 — топочная камера, 3 и 4 — дымогарные трубы с горячим газом, который выходит дальше через дымоход (позиции 13 и 14 — дымоход), 5 — решётка между трубами, 6 — вход воды, выход обозначен цифрой 11 — её выход, кроме того на выходе есть устройство для измерения количества воды (обозначено цифрой 12), 7 — выход пара, зона его образования обозначено цифрой 10, 8 — сепаратор пара, 9 — наружная поверхность ёмкости, в которой циркулирует вода.

Есть другие конструкции, в которых газ двигается по трубе внутри ёмкости с водой. В таких устройствах водные ёмкости называют барабанами, а сами устройства — водотрубными паровыми котлами. В зависимости от расположения барабанов с водой, водотрубные котлы классифицируют на горизонтальные, вертикальные, радиальные, а также комбинации различных направлений труб. Схема движения воды по водотрубному котлу приведена на рисунке.


Схема водотрубного котла: 1- подвод топлива, 2 — топка, 3 — трубы для движения воды; направление её движения обозначено цифрами 5,6 и 7, место входа воды — 13, место выхода воды — 11 и место слива — 12, 4 — зона, где вода начинает превращаться в пар, 19 — зона, где есть и пар, и вода, 18 — зона пара, 8 — перегородки, которые направляют движение воды, 9 — дымоход и 10 — дымовая труба, 14 — выход пара через сепаратор 15, 16 — наружная поверхность ёмкости для воды (барабан).

Газо- и водотрубные котлы: сравнение

Для сравнения газо- и водотрубных котлов приведём некоторые факты:

  1. Размер труб для воды и пара: у газотрубных котлов трубы — больше, у водотрубных — меньше.
  2. Мощность газотрубного котла ограничена давлением 1 МПа, и теплообразующей способностью — до 360 кВт. Это связано с большим размером труб. В них может образовываться значительное количество пара и высокое давление. Увеличение давления и количества образуемой теплоты требует значительного утолщения стенок. Цена такого котла с толстыми стенками будет неоправданно высока, экономически не выгодна.
  3. Мощность водотрубного котла — выше, чем газотрубного. Здесь используются трубы небольшого диаметра. Поэтому давление и температура пара могут быть больше, чем в газотрубных агрегатах.

Примечание: Водотрубные котлы безопаснее, мощнее, производят высокую температуру и допускают значительные перегрузки. Это даёт им преимущество перед газотрубными агрегатами.

Дополнительные элементы агрегата

В конструкцию парового котла могут входить не только топочная камера и трубы (барабаны) для циркуляции воды и пара. Дополнительно используются устройства, которые увеличивают эффективность работы системы (поднимают температуру пара, его давление, количество):

  1. Пароперегреватель — повышает температуру пара выше +100ºC. Это в свою очередь повышает экономичность и КПД работы машины. Температура перегретого пара может достигать 500 ºC (так работают паровые котлы в атомных станциях). Пар дополнительно нагревается в трубах, в которые он поступает после испарения. При этом он может иметь собственную топочную камеру или быть встроен в общий паровой котёл. Конструктивно различают конвекционные и радиационные пароперегреватели. Радиационные конструкции нагревают пар в 2-3 раза сильнее, чем конвекционные.
  2. Сепаратор пара — удаляет из пара влагу и делает его сухим. Этим увеличивается эффективность работы устройства, его КПД.
  3. Паровой аккумулятор — устройство, которое отбирает из системы пар, когда его много, и добавляет его в систему, когда его недостаточно, мало.
  4. Устройство для подготовки воды — снижает количество растворённого в воде кислорода (что предупреждает коррозию), убирает растворённые в воде минералы (химическими реагентами). Эти меры предупреждают засорение труб накипью, которая ухудшает теплоотдачу и формирует условия для прогорания труб.

Кроме того, есть клапаны для слива конденсата, воздухоподогреватели, и обязательно — система контроля и управления. В неё входят включатель и выключатель горения, автоматические регуляторы расхода воды, топлива.

Парогенератор: мощная паровая машина

Парогенератор — это паровой котёл, который снабжён несколькими дополнительными устройствами. В его конструкцию входят один или несколько промежуточных пароперегревателей, которые увеличивают мощность его работы в десятки раз. Где используются мощные паровые машины?

Главное применение парогенераторы нашли в атомных электростанциях. Здесь с помощью пара энергия распада атома преобразуется в электричество. Опишем два способа подогрева воды и образования пара в реакторе:

  1. Вода омывает корпус реактора снаружи, при этом она нагревается сама и охлаждает реактор. Таким образом, образование пара происходит в отдельном контуре (вода нагревается о стенки реактора и передаёт тепло в испарительный контур). В такой конструкции используется парогенератор — он выполняет роль теплообменника.
  2. Трубы для нагрева воды проходят внутри реактора. При подаче труб в реактор он становится топочной камерой, а пар передаётся непосредственно в электрогенератор. Такая конструкция получила название кипящего реактора. Здесь парогенератор не нужен.

Промышленные паровые агрегаты — мощные машины, которые обеспечивают людей электричеством. Бытовые агрегаты — также работают на службе человека. Паровые котлы позволяют обогревать дом и выполнять различную работу, а также дают львиную долю электрической энергии для металлургических заводов. Паровые котлы — основа промышленности.

К. п. высокого давления. Под К. п. высокого давления понимают К. п. с давлением выше 22 atm. Первые попытки построения и использования паровых установок высокого давления (45--50 atm) относятся еще к началу 19 в.; однако широкое применение пар высокого давления начинает приобретать лишь после войны 1914--18 гг., когда экономич. Преимущества пара высокого давления могли быть использованы на практике в связи с ростом мощности отдельных силовых установок и настоятельной необходимостью наиболее экономного использования топлива. Широкое развитие машиностроения и металлургии дало возможность удовлетворительно разрешить задачу построения К. п. и машин высокого давления. Термодинамически выгодность применения пара высокого давления объясняется следующими свойствами водяного пара: по мере повышения давления теплота жидкости непрерывно возрастает, а теплота испарения падает; полная теплота сухого насыщенного пара возрастает с увеличением давления до ~40 atm, а, затем начинает падать. Теплота перегретого пара при постоянной tR падает непрерывно при повышении давления. Отсюда следует, что при получении сухого насыщенного пара снижение расхода топлива на весовую единицу пара будет иметь место, лишь начиная с -40 atm и выше. Что же касается перегретого пара, то, повышая давление и оставляя неизменной tR перегрева, мы снижаем непрерывно расход топлива на весовую единицу пара. Необходимо при этом подчеркнуть, что экономия в топливе, получаемая на весовую единицу пара при повышении давления, вообще весьма незначительна. Так, при повышении давления с 15 atm раб. до 80, при неизменной темп-ре перегрева 400R, экономия топлива составляет всего ~3,3%. Поэтому главная выгода от применения пара высокого давления лежит не в области котельной установки, а в области парового двигателя (см. Паровые машины и Турбины паровые). При данных выше условиях адиабатический перепад при давлении в конденсаторе в 0,05 atm абс. составит соответственно 240 и 288 Cal/кг, что при учете незначительного возрастания потерь с увеличением давления даст общую экономию на 1 kWh около 16%. Более выгодно применение пара в установках с использованием отработанного пара для нагревания или отопления. В этом случае при пользовании паром в 80 atm общий коэф. использования тепла пара доходит до ~ 70%. Во избежание значительной влажности пара в последних ступенях турбины высокого давления часто применяют промежуточный перегрев пара, причем пар из последних ступеней турбины высокого давления отводится во вторичный перегреватель, перегревается в нем и затем направляется в следующую часть турбины. Выгода применения вторичного перегрева заключается в том, что затраченное тепло почти полностью используется в турбине. Промежуточный перегрев дает 1--3% экономии в топливе. Экономичность чисто конденсационных установок высокого давления может быть сильно увеличена путем применения регенеративного процесса, при к-ром часть пара из промежуточных ступеней турбины ответвляется для подогрева питательной воды. Применение этого способа дает экономию в 4--8%. Осуществление регенеративного цикла влечет за собою весьма существенное изменение в общей схеме котельной установки: поскольку подогрев воды производится при помощи пара, обычный водяной экономайзер, работающий на отходящих газах К. п., становится либо вовсе ненужным либо поверхность его д. б. значительно уменьшена, т.к. задачей его может явиться лишь небольшой подогрев воды после парового подогревателя (при многоступенчатом подогреве воды паром вода м. б. подогрета до 130--150R и выше). Для использования тепла отходящих газов К. п., в этом случае устанавливается воздушный подогреватель, стоимость к-рого значительно ниже экономайзера. Так как t Rкип. воды растет вместе с повышением давления, то в установках высокого давления представляется возможным повысить tR подогрева воды по сравнению с установками низкого давления. Это обстоятельство при отсутствии подогрева промежуточным паром влечет за собой увеличение поверхности подогревателей за счет поверхности К. п., что имеет следствием повышение экономичности всей установки вследствие того, что 1) поверхность нагрева подогревателей стоит дешевле поверхности нагрева самого К. п. и 2) поглощение тепла подогревателями происходит более интенсивно, чем последними ходами К. п., в силу большей разности tR нагревающего тела и нагреваемого. При повышении давления уменьшается уд. Объем пара и следовательно увеличивается его уд. вес. Это свойство влечет за собой весьма существенные последствия. 1) Не изменяя скорости течения пара в паропроводах по сравнению с установками низкого давления, можно уменьшать диаметры труб по мере повышения давления, что удешевляет паропроводы. Следует однако заметить, что средние скорости пара по мере повышения давления необходимо понижать для уменьшения потерь. 2) Благодаря увеличению плотности пара улучшается передача тепла от внутренней стенки трубки перегревателя к пару. Это обстоятельство значительно понижает темп-ру наружных стенок трубок перегревателя и уменьшает опасность пережога трубок при весьма высоких tR перегрева пара (450R и выше). 3) Благодаря уменьшению уд. объема пара представляется возможным уменьшить диаметры верхних коллекторов К. п., сохраняя скорость отделения пара от зеркала испарения на той же высоте, как и в К. п. низкого давления. При повышении давления уменьшается аккумулирующая способность нагретой до tR кип , воды по той причине, что увеличение теплоты жидкости воды при повышении давления на 1 atm замедляется по мере увеличения абсолютного давления. Так, при повышении давления с 15 до 16 atm абс. теплота жидкости 1 кг воды увеличивается на 3,3 Cal, а при повышении с 29 до 30 atm абс. она увеличивается только на 2,1 Cal. В силу указанного К. п. высокого давления обладают значительной чувствительностью к колебаниям нагрузки; это явление усугубляется еще тем, что запас воды в них невелик. Изменение аккумулирующей способности воды при разных давлениях и при разных величинах падения давления видно-из диаграммы фиг. 83 (по Мюнцингеру). Указанное свойство К. п. высокого давления вынуждает включать в схему котельной установки с сильно колеблющейся нагрузкой специальные аккумуляторы (см. Аккумулирование тепла). Конструкция, материалы. Конструктивное оформление паровых котлов высокого давления идет в настоящее время по двум основным путям. Первый путь заключается в создании типов, по самому существу своему отличающихся от обычных, "нормальных", котлов, второй--в переконструировании старых типов вертикально-водотрубных и секционных котлов с учетом специальных требований, предъявляемых к К. п. высокого давления. К числу наиболее интересных конструкций К. п. первой категории относятся котлы систем Атмос, Бенсона, Лефлера и Шмидта-Гартмана. К о т е л Атмос (фиг. 84) представляет собой систему из нескольких горизонтально расположенных труб а диам. около 300 мм, вращающихся со скоростью около 300 об/м. (необходимая мощность мотора--около 1-- 2 НP на трубу). Трубы расположены в топочном пространстве. Вода подогревается предварительно в экономайзере до tR кип ., a затем подается в трубы (роторы), в которых под действием центробежной силы прижимается к стенкам, образуя внутри труб полый цилиндр. Пар затем поступает в перегреватель. Паропроизводительность К. п. регулируется числом оборотов роторов. Котлы строятся на давление 50 --100 atm и выше. Паропроизводительность котлов Атмос достигает 300--350 кг/м2 в час, так как котел по существу является первым рядом труб водотрубного котла, дающих примерно ту же паропроизводительность. Преимуществами котлов этой системы являются отсутствие дорого стоящих барабанов большого диаметра, наличие небольшой поверхности нагрева и простая схема циркуляции воды; к недостаткам их относятся значительная сложность механизма вращения и сальников у концов роторов, а также возможность повреждения роторов при остановке моторов; эти обстоятельства требуют исключительно внимательного ухода за котлом. К о т е л Б е н с о н а отличается оригинальностью самого рабочего процесса, изображенного в JS-диаграмме на фиг. 85. Подогретая вода при давлении около 225 atm подается в змеевики, где нагревается до 374R, после чего мгновенно переходит в пар без затраты тепла на этот переход, т. к. давление 224,2 atm при темп-ре 374R является критическим; пар в этой точке обладает максимальной теплотой жидкости, около 499 Cal, и теплотой испарения равной нулю. Благодаря этому в К. п. фактически не происходит процесса парообразования и отсутствуют все нежелательные явления, связанные с этим процессом. Пар перегревается далее до 390R, затем дросселируется приблизительно до 105 atm и вторично перегревается до 420R. Пар с давлением в 105 atm и tR 420R является рабочим и направляется в турбину. Преимущество котла заключается в отсутствии дорогих барабанов и в относительной безопасности устройства благодаря ничтожному водяному объему. Однако котел отличается крайней чувствительностью к колебаниям нагрузки и к перерывам питания. Кроме того осуществление процесса Бенсона требует несоответственно большого расхода энергии на питательные насосы, т. к. последние должны иметь напор около 250 atm, в то время как рабочий пар имеет давление ок. 100 atm. Конструктивное выполнение К. п. системы Бенсона изображено на фиг. 86. К о т е л Л е ф л е р а основан на принципе получения пара высокого давления путем непосредственного впуска сильно перегретого пара в неомываемый непосредственно газами барабан испарителя, в к-рый подается подогретая до высокой tR вода. Образующийся в испарителе пар помощью специального насоса направляется в перегреватель, находящийся под действием лучистой теплоты и топочных газов. Перегретый пар из перегревателя направляется частью в турбину, частью в испаритель. Преимущества котла -- довольно значительный объем воды в испарителе, отсутствие кипятильных труб, часто являющихся в эксплоатации причиной аварий, отсутствие необходимости в тщательном умягчении питательной воды (испаритель не обогревается горячими газами). Недостаток котла--сложность системы и в частности насоса, отсасывающего из испарителя пар. При остановке насоса может иметь место пережог трубок перегревателя несмотря на наличие специального предохранителя. Этот специальный насос поглощает большое количество энергии, относительно тем большее, чем ниже давление пара. Поэтому котел работает неэкономично при давлении ниже 100 atm (при давлении около 130 atm расход на насос составляет ок. 2% всей выработанной котлом энергии). На фиг. 87 изображены схема котла и его конструктивное выполнение (а--насос, б -- паропровод в машину, в -- перегреватель, г --испаритель, д --экономайзер, е --воздушный подогреватель). Котел Шмидта-Гартмана (фиг.88) состоит из барабана а с расположенной в нем системой змеевиков б, по которым протекает насыщенный пар, испаряющий воду в барабане. В топочном пространстве котла расположены змеевики в, являющиеся продолжением змеевиков, лежащих в барабане (остальные обозначения: г --перегреватель, д --экономайзер). В этих змеевиках производится пар, отдающий затем свое тепло воде. Испаряющий пар в змеевиках имеет давление на ~ 30 atm больше давления рабочего пара. Циркуляция в змеевиках происходит естественным путем, в противоположность описанным выше системам, в которых она осуществляется принудительным способом. Преимущества котла--безопасн. работа змеевиков, по к-рым течет испаряющий пар (по змеевикам циркулирует непрерывно одна и та же вода), высокий коэфициент теплопередачи от конденсирующегося в змеевиках насыщенного пара, отсутствие омывания барабана горячими газами. Недостатки котла-- относительная дороговизна и необходимость держать змеевики под значительно большим давлением, чем рабочий пар. Построенные по обычному, "нормальному", типу водотрубные К. п. высокого давления (а большинство установок высокого давления снабжается и по настоящее время именно такими К. п.) имеют ряд конструктивных особенностей, из к-рых главнейшие: 1) незначительное количество барабанов небольшого диаметра (для удешевления); 2) небольшая поверхность нагрева первого газохода (до перегревателя) с целью получения большого перегрева; 3) отсутствие жестких соединений между отдельными элементами К. п.; с этой целью избегают применения соединительных труб большого диаметра; трубы загибаются радиусом, не меньшим пятикратного наружного диаметра трубы; 4) наличие в гнездах для труб в барабанах, секционных коробках и камерах перегревателя канавок глубиной от 0,5 до 1 мм для большей надежности развальцовки; 5) обязательная надежная изоляция барабанов от воздействия на них горячих газов и лучистой теплоты. Изоляция необходила для уменьшения Г-ных напряжений материала барабанов, появляющихся вследствие разности tR наружной и внутренней поверхности стенки и растущих при увеличении ее (при наличии изоляции разность tR невелика). Следует также указать, что более низкая tR стенки дает возможность выполнить эту стенку более тонкой, так как напряжение в ней допускается тем большее, чем ниже tR стенки. Изоляция защищает от газов также места развальцовки труб. Изоляция осуществляется рядом способов, из к-рых главными являются: 1) чугунные пластины; 2) специальные шамотные кирпичи, подвешиваемые к барабанам; 3) система трубок небольшого диаметра, помещенная у барабанов и охлаждаемая водой из котла; 4) набрызгивание (торкретирование) на барабан жидкой смеси из специальной огнеупорной массы и воды при помощи цемент-пушки (наилучший способ). К. п. высокого давления, работающие с высоким напряжением поверхности нагрева, обычно снабжаются водяными экранами, т. е. системой труб, включенной в общую систему циркуляции К. п. и расположенной в топочном пространстве котла. Экраны увеличивают производительность К. п. и понижают температуру стенок топочной камеры и находящихся в ней газов. Наиболее ответственной частью К. п. являются барабаны. По методу выполнения барабаны можно разделить на следующие типы. 1) Барабаны с продольными клепаными швами и с вклепанными днищами; они применяются обычно до давления приблизительно 35 a t m, хотя имеется ряд выполненных клепаных котлов и на давление до 50 -- 80 atm. 2) Барабаны с продольными сварными швами с приклепанными, приваренными к ним или осаженными из того же листа днищами; эти барабаны применяются для давления до 40--45 atm; свариваются они машинным способом. 3) Цельнокованые барабаны применяются для всех давлений, главы, обр. для давления выше 40--45 a t m (см. К отлостроение). А р м а т у р а. Для уменьшения потерь давления в парозапорных органах последние почти исключительно выполняются как задви ж ки (см.) или как клапаны (см.) специального типа. Применения кранов даже самого малого диаметра избегают, заменяя их клапанами. Водомерные приборы выполняются с несколькими стеклами. При очень высоких давлениях применяют специальные приборы без стекол. Запорные органы обычно выполняют так. обр., что шпиндели не находятся в струе пара. В качестве материала для основных деталей арматуры применяют мартеновское литье (для давления до 30-- 40 a t m) или электросталь. Для более высокого давления часто применяют легированную сталь, например молибденовую, причем мелкие детали выполняют обычно отковкой. В качестве уплотнений для соединений применяют клингерит, а также мягкое железо и металл Монеля. Р е г у л я т о р ы п е р е г р е в а и п и т а н и я. К. п. высокого давления для надежности работы должны снабжаться регуляторами перегрева и питания. Регуляторы перегрева можно разделить на две основные группы: а) воздействующие на перегретый уже пар и предохраняющие только паропровод и турбину от чрезмерного перегрева, т. е. регуляторы, устанавливаемые за перегревателем (трубчатый регулятор, в к-ром охлаждается перегретый пар поверхностным способом, или впрыскивание распыленной дистиллированной воды в пар), и б) предохраняющие кроме паропровода и турбины также и перегреватель от чрезмерного нагрева (газораспределительные заслонки, комбинации плит у перегревателя для пропуска части газов мимо перегревателя, впрыскивание распыленной воды в пар перед перегревателем и т. д.). Регуляторы целесообразно снабжать автоматами, которые не дают возможности пару перегреться выше определенной темп-ры. Регуляторы питания имеют назначение автоматически держать определенный уровень воды в К. п., подавая воду в зависимости от режима работы. Основные типы регуляторов основаны либо на принципе поплавка, плавающего на уровне воды и воздействующего при помощи передаточного механизма на степень открытия клапана, либо на принципе трубчатого термостата, заполняемого частью паром, частью водой (в зависимости от уровня воды в К. п.), также воздействующего на степень открытия клапана (регулятор Копес). Применяются также и регуляторы иного типа. Экономика. Выше были указаны основные термодинамические преимущества пара высокого давления. Но выгодность применения установок высокого давления определяется не только теоретич. соображениями, но и целым рядом других обстоятельств, как то: стоимостью, амортизацией, сложностью или простотой обслуживания, степенью надежности и проч. С повышением давления растет и стоимость котлов; стоимость топочного устройства, бункеров, тягового устройства не увеличивается, а в иных случаях, при значительном уменьшении расхода топлива не, 1 kWh, даже падает; стоимость паропровода почти не меняется; стоимость же питательных насосов и расход энергии на эксплоатацию их, а также стоимость питательных трубопроводов растут. Для суждения о выгодности применения высокого давления необходимо иметь точные данные о соотношении между величинами амортизации и отчислений на добавочные затраты,с одной стороны, и экономии в стоимости топлива, с другой. Для возможности суждения о стоимости К. п. советского производства в пределах давлений, применяемых в настоящее время нашими з-дами, на фиг. 89 приведена диаграмма (цены даны для вертикальных водотрубных котлов со всей необходимой арматурой, гарнитурой, каркасом, перегревателем и механической цепной решеткой с зонным дутьем). Пар высокого давления применяется в чисто силовых установках, установках с отбором промежуточного пара и с противодавлением. Высокое давление (порядка 90--100 a t m) экономически выгодно при высокой стоимости топлива, большом количестве рабочих часов в год и при относительно дешевых котлах. При уменьшении стоимости топлива и количества рабочих часов и при повышении стоимости котлов экономически выгоднее применять более низкое давление. Давление в 40--60 a t m при смешанных установках выгодно при всяких условиях работы и всякой стоимости топлива. Экономичность установок высокого давления обусловливается главн. обр. уменьшением расхода топлива. Для определения расхода топлива на 1 kWh необходимо учесть также расход его на питательные и конденсационные насосы и прочее вспомогательное оборудование. На фиг. 90 изображена диаграмма, на которой нанесены кривые экономии в топливе при разных давлениях при сравнении с давлением 15 atm для силовых установок и для одного частного случая смешанной установки с разными противодавлениями. Для удешевления К. п. необходимо довести число барабанов и их диаметр до минимума, т. к. стоимость барабанов является одной из основных составляющих общей стоимости паровых котлов. Но стремление к удешевлению К. п. не должно влиять на ухудшение условий работы, так как необходимо обеспечить хотя бы минимум водяного объема (при работе без аккумулятора) и получение достаточно сухого пара. Однобарабанные К. п., осуществляемые гл. обр. в виде секционных К. п. с поперечным барабаном, находят себе достаточно широкое применение и стоят дешевле многобарабанных, но они имеют небольшой объем воды, и при сильно колеблющихся нагрузках эксплоатация их без аккумулятора затруднительна. Эксплоатация К. п. высокого давления требует соблюдения ряда особых условий. Первым и основным требованием является подготовка питательной воды. Во избежание разъедания частей К. п. необходимо довести до минимума содержание кислорода в питательной воде. Ориентировочно можно указать, что содержание кислорода приблизительно 1 -- 3 мг в 1 л питательной воды является еще допустимым. Следует заметить, что при высоком давлении разъедающее действие кислорода сильнее, чем при обычном давлении. Кроме того вода д. б. умягчена во избежание образования накипи в К. п. Жесткость воды в К. п. должна быть не больше 2R немецких. Для поддержания этой величины кроме умягчения воды необходима тщательная продувка К. п. Следует рекомендовать непрерывную продувку. При растопке К. п. необходимо охлаждать перегреватель. Наилучшим способом следует признать просасывание через него насыщенного пара от соседних работающих К. п. При охлаждении перегревателя водой последняя должна удовлетворять всем требованиям, предъявляемым к питательной воде, причем жесткость е"е д. б. доведена до минимума (0,5--1,0R немецких). Не следует рекомендовать пользоваться этим способом при растопке парового котла. Для снижения tR перегретого пара не следует прибегать к смешиванию его с насыщенным. В крайнем случае при пользовании этим способом можно допустить, при пропуске части насыщенного пара мимо перегревателя, повышение tR перегретого пара непосредственно за перегревателем не больше, чем на 30--40R сверх расчетной. Лит.: М ю н ц и н г е р Ф., Пар высокого давления, пер с. нем., Москва, 1926; Г а р т м а н О., Пар высокого давления, пер. с нем., М., 1927; Практика эксплоатации паровых котлов, пер. с нем., Л., 1929; M u n z i n g e r F., Ruths-Warmespeicher in Kraftwerken, В., 1922; Speisewasserpflege, hrsg. v. Vereinigung d. Grosskesselbesitzer e. V., Charlottenburg; "Hochdruckdampf", Sonderheft d. "Z. d. VDI", Berlin, 1924 и 1929; "Archiv fur die Warmewirtschaft", В., 1927, 12 (тепловые аккумуляторы); ibidem, 1926, 5 (арматура высокого давления); ibid., 1929, 2 (арматура высокого давления); "Ztschr. d. VDI", 1928, 39, 42, 43 (о котле Лефлера); ibid., 1925, 7 (о котле Атмос); "Die Warme", В., 1929, 30 (расчет котлов высокого давления); "Kruppsche Monatshefte", Essen, 1925, октябрь (расчет котлов высокого давления); "HanomagNachrichten", Hannover, 1926, Н. 150--151 (расчет котлов высокого давления). С. Шварцман.

Паровые котлы являются специализированным оборудование для производства пара из жидкостей, в основном из воды. Пар применяется в различных сферах производства, энергетике и в отопительных системах, например для отопления промышленных зданий, учреждений, находящихся в тяжелых климатических условиях. Использование пара оправдано при дезинфекционных мероприятиях в медицинских учреждениях. В зависимости от поставленных задач, существуют промышленные парогенераторные установки, и котлы, предназначенные для бытовых задач. Эти агрегаты могут работать на различных источниках тепловой энергии. Существуют устройства, которые генерируют пар при помощи утилизации излишков тепла, полученного от крупных промышленных установок. Выбор необходимого парогенераторного оборудования должен происходить на основе знаний принципов работы данных устройств и их классификации.

Паровой котел, для чего он нужен?

Паровые котлы, в зависимости от назначения применяются в определенных областях, где использование пара необходимо для соблюдения технологического цикла производства или в некоторых проектах отопительных систем.

Устройство парового котла

Оборудование, генерирующее пар подразделяется на следующие виды:

  • паровые котлы энергетического назначения (используются на электростанциях, для привода турбин, генерирующих электроэнергию);
  • паровые котлы промышленного типа (выработка пара для осуществления технологических операций в производстве);
  • паровое котельное оборудование, предназначенное для отопления, прачечных, эксплуатации дезинфекционных установок;
  • утилизационные котлы, производящие пар при помощи отбора тепла у перегретых дымовых газов, образующихся в результате производства в металлургии и химической промышленности.

Паровой котел промышленного типа

В энергетике используются самые мощные устройства, вырабатывающие до 5000 т пара в час при давлении около 280 кгс/см2. Пар получают перегретым до температуры 500 С, после чего он поступает в турбинные агрегаты, где происходит превращение тепловой энергии в механическую.

Паровые котлы для отопительных систем производят пар низкого давления, чаще всего в насыщенном состоянии. Отопление такое типа целесообразно использовать в очень холодных климатических зонах, для предупреждения замерзания теплосистемы, в частности, ее оборотного цикла.

В некоторых учреждениях выгодно эксплуатировать паровой котел, который обеспечивает отопление здания и служит для подачи пара в прачечные. Иногда паровые генераторы устанавливают там, где возможна утилизация высокотемпературных газов, данное решение позволяет экономить существенные суммы в отопительный период.

Паровые котлы и принцип работы имеют значительные отличия от водогрейных систем. Работа парообразующих агрегатов основана на нагреве воды и последующего ее превращения в пар. Нагрев ведется при помощи выделения тепла от сжигания горючих материалов, чаще всего используется природный газ или уголь. Выдача пара котлом всегда происходит под избыточным давлением и в зависимости от назн ачения его величина колеблется в широких пределах и может меняться от1 кгс/см2 до нескольких сотен кгс/см2.

Схема работы парового котла

Эксплуатация подобных устройств связана с некоторой опасность, так как пар является сжимаемой средой и в котлах определенного типа он находится в больших объемах в сжатом состоянии, в связи с этим надежность оборудования регламентируется специальными ГОСТами. Главный фактор надежности обусловлен отсутствием разгерметизации и высвобождением большой массы разогретого пара в близлежащее пространство.

Современное оборудование более безопасно, по причине применения таких схем конструкции котла, при которых образование пара происходит в малых объемах, но с высокой скоростью, то есть не происходит аккумуляция значительных масс парообразного состояния воды. Тем не менее, безопасность паровых установок зависит от контроля параметров давления и температуры и от уровня автоматики, осуществляющей сброс излишков пара и отключения нагрева в случае аварийной ситуации .

Различия и виды парового оборудования

Несмотря на то, что принцип действия всех котлов основан на передаче теплоты сгорания горючих веществ воде для ее перехода в парообразное состояние, конструктивный подход в парогенерирующих агрегатах разный.

Основные виды оборудования:

  • с газотрубным методом получения пара;
  • с водотрубным методом.

Газотрубные котлы предусматривают получение пара следующим способом . В цилиндрический корпус котла встроены трубы, в которых происходит горение или проходят разогретые дымовые газы. От этих труб происходит передача тепла воде, которая затем превращается в пар. Эти агрегаты подразделяются на котлы с жаровыми или дымогарными трубами. Жаровой тип предполагает процесс сгорания топлива непосредственно в самой трубе, для этого на входе в нее устанавливается горелка с наддувом, которая позволяет равномерно сгорать топливу по всей длине трубы. В дымогарных трубах, горения не происходит, а теплота воде передается за счет подачи в них разогретого газа (продуктов сгорания) . То есть теоретически происходит процесс утилизации избыточного тепла продуктов сгорания. Процесс испарения происходит в верхней части цилиндра и накопленный пар постепенно сбрасывается в магистраль через перепускной клапан, рассчитанный под требуемое давление.

Котел с газотрубным методом получения пара

Утилизационные схемы котлов с дымогарным способом передачи тепла, проектируются таким образом, чтобы температура газов на выходе была не менее 150 С, для обеспечения последующей тяги в дымовых трубах.

В газотрубных котлах происходит образование пара непосредственно в самом корпусе устройства, из-за этого емкость котла является накопителем большой массы пара под избыточным давлением. Этот факт ограничивает мощностные характеристики агрегатов, так как в случае генерации пара под высоким давлением возможен разрыв сосуда агрегата и мгновенное высвобождение большой массы парообразного вещества. Мощность газотрубных котлов ограничена и составляет приблизительно 400 кВт, рабочее давление не выше 10 кгс/см2.

Водотрубные парогенераторы имеют противоположный принцип работы. В них теплота сгорания топлива передается трубам, к которых находится вода, вследствие чего происходит закипание и переход ее в парообразное состояние. Расположение кипятильных труб и способ циркуляции воды по ним зависит от конструктивных особенностей.

Наиболее распространенные схемы водотрубных генераторов пара:

  • барабанные;
  • прямоточные.

Барабанная схема

Барабанные устройства бывают горизонтальными или вертикальными , состоят из топки, сверху которой расположены обвязки из труб, выходящие в барабан, накапливающий готовый пар. Теплота сгорания топлива передается трубам, в них образуется насыщенный пар, в барабане происходит отделение неиспарившейся воды, которая возвращается обратно в трубы. Прогон жидкости по ним может происходить до 30 раз и зависит от типа агрегатов. Котлы с естественной циркуляцией воды работают по принципу поднятия разогретых водных слоев и считаются менее производительными. В циркуляционных водотрубных генераторах количество прогонов сокращается и повышается выход готового пара, при этом требуется большее количество топлива для обеспечения скорости парообразования. Исполнение котлов может быть горизонтальное или вертикальное. В горизонтальных конструкциях используется один барабан для приема пара, а в вертикальных решениях допускается несколько барабанов.

Барабанный котел с водотрубным методом получения пара

Современные конструкции предусматривают установку радиационных экранов в топке, позволяющих отбирать лучистый тип энергии при сгорании и дополнительно производить пар. Геометрическое расположение труб в кожухе котла напрямую влияет на скорость нагрева и парообразования, при этом происходит экономия топлива.

Так же как и в газотрубных котлах температура газов не должна быть менее 150 С, для избегания ухудшения тяги. В больших промышленных установках применяются дымоотсосы для удаления продуктов сгорания.

Для того чтобы производить перегретый пар с нужной температурой, устанавливается пароперегреватель. Его конструкция напоминает пучковое соединение труб, только в них подается насыщенный пар, а на выходе он выходит в перегретом состоянии. Нагрев ведется также дымовыми газами.

Прямоточная схема

Прямоточные агрегатыустроены таким образом, что подаваемая вода в трубы проходит без циркуляции и за это время успевает перейти в парообразное состояние. Такой тип котлов является наиболее производительным.

Комплексная парогенерирующая установка содержит специальный сепаратор, задача которого состоит в удалении жидкой составляющей парообразной смеси. Это критично для потребителей, требующих подачу сухого пара. Содержание жидкой фазы воды ухудшает теплоотдачу и может привести к конденсационным эффектам в узлах магистрали, в результате возникает риск гидроудара в системе.

Схема прямоточного котла с водотрубным методом получения пара

Водотрубные котлы, в отличие от газотрубных нуждаются в тщательной водоподготовке, так как при парообразовании может происходить отложение солей на внутренней поверхности труб. Это приводит к снижению производительности или к аварийным ситуациям из-за прогара. Водоподготовка включает удаление растворенного кислорода и смягчение воды специальными химическими веществами. При эксплуатации котла в замкнутом контуре, например в отопительной системе, водоподготовка проводится один раз. Если предусматривается постоянный забор готового пара, то подпитка ведется только подготовленной водой.

Топливом для паровых котлов может служить:

  • природный газ;
  • уголь;
  • дизельное топливо;
  • электроэнергия;
  • мазут;
  • атомная энергия.

Паровые котлы с низкой производительностью, применяемые для отопления различных площадей, чаще всего используют природный газ, уголь или дизельное топливо.

Для каких помещений подходит паровое отопление?

Паровое отопление применяется в определенных случаях, в основном, когда целесообразно утилизировать энергию дымовых газов от какого-либо производства. Как правило, чаще всего отапливаются производственные площади (цеха, мастерские, подсобные помещения, гаражи).

В настоящее время отопление паровым способом жилых помещений применяется редко, так как сложно регулировать температурный режим и существует опасность ожога паром при повреждении отопительной системы.

Паровые котлы, работающие на угле, газе или дизельном топливе устанавливают в тех помещениях, в которых нужно установить определенную температуру за короткий период времени. Объясняется это малой инерционностью паровых систем и большой отдачей тепловой энергии. Пар, кроме передачи своего тепла, передает скрытый тип тепловой энергии во время своей конденсации, которая была получена в процессе испарения. То есть тепловая энергия передается не только за счет охлаждения массы пара, но и за счет его конденсации.

Схема парового отопления дома

Достоинства парового отопления:

  • можно применять радиаторы меньшей площади, за счет большой ∆t;
  • быстрое достижение требуемой температуры в помещении;
  • малый объем сконденсированной воды на возвратном трубопроводе, позволяет применять трубы небольшого диаметра;
  • возможность сократить расходы на отопление при возможности утилизации дымовых газов в парогенераторе.

Недостатки:

  • невозможность регулировки температуры радиаторов;
  • вероятность ожога при прикосновении к элементам отопительной системы (температура 120-130 С);
  • высокий уровень шума работы паровых котлов;
  • потери тепла в магистралях.
  • Паровые котлы, спецификации по их эксплуатации, должны подбираться в зависимости от поставленных задач и финансовой целесообразности их использования.

Котел паровой, цена зависит от объема

Итог

Парогенерирующее оборудование, специфично и кроме промышленного и энергетического применения может использоваться в качестве альтернативы водяному отоплению в нежилых помещениях при проектных требованиях данной системы.

Принцип работы парового котла (видео)

В данном видео вы узнаете как происходит процесс работы парового котла